Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T19:20:47.393Z Has data issue: false hasContentIssue false

A continuation method for motion-planning problems

Published online by Cambridge University Press:  15 December 2005

Yacine Chitour*
Affiliation:
Laboratoire des signaux et systèmes, Université de Paris-Sud, CNRS, Supélec, 91192, Gif-Sur-Yvette, France; [email protected]
Get access

Abstract

We apply the well-known homotopy continuation method to address themotion planning problem (MPP) for smooth driftless control-affinesystems. The homotopy continuation method is a Newton-type procedureto effectively determine functions only defined implicitly. Thatapproach requires first to characterize the singularities of asurjective map and next to prove global existence for the solution ofan ordinary differential equation, the Wazewski equation. In thecontext of the MPP, the aforementioned singularities are the abnormalextremals associated to the dynamics of the control system and theWazewski equation is an o.d.e. on the control space called the PathLifting Equation (PLE). We first show elementary factsrelative to the maximal solution of the PLE such as local existence anduniqueness. Then we prove two general results, a finite-dimensionalreduction for the PLE on compact time intervals and aregularity preserving theorem. In a second part, if the Strong BracketGenerating Condition holds, we show, forseveral control spaces, the global existence of the solution of the PLE,extending a previous result of H.J. Sussmann.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
E.L. Allgower and K. Georg, Continuation and Path Following. Acta Numerica (1992).
J.M. Bismuth, Large Deviations and the Malliavin Calculus. Birkhäuser (1984).
Cesari, L., Functional analysis and Galerkin's method. Mich. Math. J. 11 (1964) 385418.
Chelouah, A. and Chitour, Y., On the controllability and trajectories generation of rolling surfaces. Forum Math. 15 (2003) 727758. CrossRef
Y. Chitour, Applied and theoretical aspects of the controllability of nonholonomic systems. Ph.D. thesis, Rutgers University (1996).
Chitour, Y., Path planning on compact Lie groups using a continuation method. Syst. Control Lett. 47 (2002) 383391. CrossRef
Chitour, Y. and Sussmann, H.J., Line-integral estimates and motion planning using a continuation method. Essays on Math. Robotics, J. Baillieul, S.S. Sastry and H.J. Sussmann Eds., IMA. Math. Appl. 104 (1998) 91125.
S.N. Chow and J.K. Hale, Methods of Bifurcation Theory. Springer, New York 251 (1982).
Divelbiss, A. and Wen, J.T., Path Space Approach, A to Nonholonomic Motion Planning in the Presence of Obstacles. IEEE Trans. Robotics Automation 13 (1997) 443451. CrossRef
Ge Zhong, Horizontal Path Spaces and Carnot-Carathéodory, Metrics. Pacific J. Math. 161 (1993) 255286.
Grasse, K.A. and Sussmann, H.J., Global controllability by nice controls, Nonlinear controllability and optimal control. Dekker, NY. Mono. Text. Pure Appl. Math. 133 (1990) 3379.
J.K. Hale, Applications of alternative problems. Lectures notes, Brown University (1971).
M.W. Hirsch, Differential Topology. Springer, New York (1976).
V. Jurdjevic, Geometric control theory. Cambridge Studies in Adv. Math., Cam. Univ. Press (1997).
G. Lafferriere, and H.J. Sussmann, Motion planning for controllable systems without drift, in Proc. Int. Conf. Robot. Auto. Sacramento, CA (1991) 1148–1153.
E.B. Lee and L. Markus, Foundations of Optimal Control Theory. Wiley, New York (1967).
Leray, J. and Schauder, J., Topologie et équations fonctionelles. Ann. Sci. Ecole Norm. Sup. 51 (1934) 4578. CrossRef
T.Y. Li, Numerical solution of multivariate polynomial systems by homotopy continuation methods. Acta Numerica (1997) 399–436.
Liu, W., An approximation algorithm for nonholonomic systems. SIAM J. Control Optim. 35 (1997) 13281365. CrossRef
W. Liu and H.J. Sussmann, Shortest paths for sub-Riemannian metrics on rank 2 distributions. Memoirs of the AMS, $\#$ 564 118 (1995).
P. Martin, Contribution à l'étude des systèmes différentiellement plats. Ph.D. thesis, École des Mines de Paris, Paris, France (1992).
R. Montgomery, Abnormal Optimal Controls and Open Problems in Nonholonomic Steering. J. Dyn. Cont. Sys. 1 Plenum Pub. Corp. (1995) 49–90.
R.M. Murray and S.S. Sastry, Steering nonholonomic systems using sinusoids, in Proc. IEEE Conference on Decision and Control (1990).
Cz. Olech, On the Wazewski equation, in Proc. of the conference, Topological methods in Differential Equations and Dynamical systems, Krakow (1996). Univ. Iagel. Acta Math. 36 (1998) 55–64.
Pansu, P., Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. 129 (1989) 160. CrossRef
S.L. Richter and R.A. Decarlo, Continuation methods: Theory and Application. IEEE Trans. Circuits Syst. 30 (1983).
E.D. Sontag, Mathematical Control Theory. Texts Appl. Math. 6, Springer-Verlag, New York, 2nd edition (1998).
Souères, P. and Laumond, J.P., Shortest paths synthesis for a car-like robot. IEEE Trans. Aut. Cont. 41 (1996) 672688. CrossRef
Strichartz, R., Sub-Riemannian Geometry. J. Diff. Geom. 24 (1983) 221263. CrossRef
H.J. Sussmann, A Continuation Method for Nonholonomic Path-finding Problems, in Proceedings of the 32nd IEEE CDC, San Antonio, TX (Dec. 1993).
H.J. Sussmann, New Differential Geometric Methods in Nonholonomic Path Finding, in Systems, Models, and Feedback, A. Isidori and T.J. Tarn Eds. Birkh $\ddot a$ user, Boston (1992).
T. Wazewski, Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes. Ann. Soc. Polon. Math. 20 (1947).