Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T05:09:53.606Z Has data issue: false hasContentIssue false

Comparison of active control techniquesover a dihedral plane

Published online by Cambridge University Press:  15 August 2002

Emmanuel Creusé*
Affiliation:
M.A.C.S., Université de Valenciennes, le Mont Houy, 59313 Valenciennes Cedex 9, France; [email protected]. M.A.B., Université Bordeaux 1, 33405 Talence, France.
Get access

Abstract

This work is devoted to the numerical comparison of four active control techniques in order to increase the pressure recovery generated by thedeceleration of a slightly compressible viscous flow over a dihedral plane. It is performed by theuse of vortex generator jets and intrusive sensors. The governing equations,the two-dimensional direct numerical simulation code and the flow configuration are first briefly recalled. Then, the objective of thecontrol is carefully displayed, and the uncontrolled flow described. The main part of this work deals with the explanation, the implementation andthe comparison of four active control strategies: closed loop control,adaptative control, physical ramp control and sub-optimalcontrol. Each of these techniques is of different nature,and results are very formative to understand what is important– or less – to make the control efficient.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abergel, F. and Temam, R., On some control problems in fluid mechanics. Theoret. Comput. Fluid Dynamics 1 (1990) 303. CrossRef
C. Basdevant and T. Philipovitch, On the ``Weiss criterion'' in two-dimensional turbulence. Physica D (1994) 17-34.
T. Bewley, H. Choi, R. Temam and P. Moin, Optimal feedback control of turbulent channel flow. Technical report annual research briefs, center for turbulence research (1993).
T. Bewley and P. Moin, Optimal control of turbulent channel flow. ASMEDE 75 (1994).
T. Bewley, P. Moin and R. Temam. A method for optimizing feedback control rules for wall-bounded turbulent flows based on control theory', Forum on control of transitional and turbulent flows, ASME fluids engineering conference (1996).
T.R. Bewley, P. Moin and R. Temam, Optimal and robust approaches for linear and non linear regulation problems in fluid mechanics, in 28th AIAA fluid dynamics conference, 4th AIAA shear flow control conference (1997).
C.H. Bruneau and E. Creusé, Towards a transparent boundary condition for the compressible Navier-Stokes equations. Internat. J. Numer. Methods Fluids (to appear).
Choi, H., Moin, P. and Kim, J., Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255 (1993) 503-539. CrossRef
Choi, H., Moin, P. and Kim, J., Active turbulence control for drag reduction in wall bounded flow. J. Fluid Mech. 262 (1994) 75-110. CrossRef
Choi, H., Temam, R., Moin, P. and Kim, J., Feedback control for unsteady flow and its application to the stockastic Burgers equation. J. Fluid Mech. 253 (1993) 509-543. CrossRef
J. Cousteix, Couche limite laminaire. Cepadues Editions (1988).
E. Creusé, Simulation et contrôle actif d'écoulements compressibles, Thèse de Doctorat. Université Bordeaux I (2000).
E. Creusé and I. Mortazavi, Vortex dynamics over a dihedral plane in a transitional slightly compressible flow: A computational study. European J. Mech. B Fluids (to appear).
L. Fezoui, S. Lanteri, B. Larrouturou and C. Olivier, Résolution numérique des équations de Navier-Stokes pour un fluide compressible en maillage triangulaire. Rapport de recherche INRIA 1033 (1989).
E.P. Hammond, T.R. Bewley and P. Moin, Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall bounded flow, Technical Report. Department of Mechanical Engineering, Stanford University, California (1998).
G. Hernandez, Contrôle actif des instabilités hydrodynamiques des écoulements subsoniques compressibles, Ph.D. Thesis. CERFACS, France (1996).
R. Insermann, K.H. Lachmann and D. Matko, Adaptive control system. Prentice Hall, New-York (1992).
Johansson, A.V., Alfredsson, P.H. and Kim, J., Evolution and dynamics of shear-layer structures in near-wall turbulence. J. Fluid Mech. 224 (1991) 579-599. CrossRef
Koumoutsakos, P., Active control of vortex-wall interactions. Phys. Fluids 9 (1997) 3808-3816. CrossRef
M.J. Lighthill, Boundary layer theory. Introduction. J. Rosenhead, Oxford University Press, New-York (1963).
J.L. Lions, Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1969).
P. Moin and T. Bewley, Feedback control of turbulence. Appl. Mech. Rev 47 (1994).
P. Moin and J. Kim, The structure of vorticity fields in turbulent channel flows. Part 1: Analysis of instantaneous field and statistical correlations. J. Fluid Mech. 155 (1985).
Poinsot, T.J. and Boundary, S.K. Lele conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1992) 104-129. CrossRef
R. Temam, T. Bewley and P. Moin, Control of turbulent flows, in 18th IFIP TC7 conferences on system modelling and optimisation. Detroit, Michigan (1997).
B. Widrow and S.D. Stearns, Adaptive signal processing. Prentice-Hall (1985).