Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T04:43:53.773Z Has data issue: false hasContentIssue false

Analytic controllability of the wave equationover a cylinder

Published online by Cambridge University Press:  15 August 2002

Brice Allibert*
Affiliation:
CMAT, École Polytechnique, UMR 7640 du CNRS, F-91128 Palaiseau, France; [email protected].
Get access

Abstract

We analyze the controllability of the wave equation on a cylinder when the control acts on the boundary, that does not satisfy the classical geometric control condition.We obtain precise estimates on the analyticity of reachable functions.As the control time increases, the degree of analyticity that is required for a function to be reachable decreases as an inverse power of time. We conclude that any analytic function can be reached if that control time is large enough. In the C class, a precise description of all reachable functions is given.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allibert, B., Contrôle analytique de l'équation des ondes sur des surfaces de révolution. C. R. Acad. Sci. Paris 322 (1996) 835-838.
B. Allibert, Contrôle analytique de l'équation des ondes sur des surfaces de révolution. Thèse de doctorat de l'École Polytechnique (1997).
Haraux, A., Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire. J. Math. Pures Appl. 68 (1989) 457-465.
G. Lebeau, Control for hyperbolic equations. Journées ``équations aux dérivées partielles'' Saint Jean de Monts, 1992. École Polytechnique, Palaiseau (1992).
Lebeau, G., Fonctions harmoniques et spectre singulier. Ann. Sci. École Norm. Sup. 13 (1980) 269-291. CrossRef
J.-L. Lions, Contrôlabilité exacte, perturbation et stabilisation des systèmes distribués. Rech. Math. Appl. 8-9 (Masson, Paris, 1988).
F. Treves, Introduction to pseudodifferential and Fourier integral operators, New York and London Plenum Press Vol. 2, 25 cm (The university series in mathematics, 1980).
A. Zygmund, Trigonometric Series, Cambridge Univ. Press (1968).