Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-20T08:27:40.271Z Has data issue: false hasContentIssue false

Weak Linking Theorems and Schrödinger Equations with Critical Sobolev Exponent

Published online by Cambridge University Press:  15 September 2003

Martin Schechter
Affiliation:
Department of Mathematics, University of California, Irvine, CA 92697-3875, USA; [email protected].
Wenming Zou
Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China; [email protected].
Get access

Abstract

In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation $-\Delta u+V(x)u=K(x)|u|^{2^\ast-2}u+g(x, u), u\in W^{1,2}({\bf R}^N)$, where N ≥ 4; V,K,g are periodic in xj for 1 ≤ jN and 0 is in a gap of the spectrum of -Δ + V; K>0. If $0<g(x, u)u\leq c|u|^{2^\ast}$ for an appropriate constant c, we show that this equation has a nontrivial solution.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alama, S. and Existence, Y.Y. Li of solutions for semilinear elliptic equations with indefinite linear part. J. Differential Equations 96 (1992) 89-115. CrossRef
Alama, S. and On, Y.Y. Li ``multibump" bound states for certain semilinear elliptic equations. Indiana J. Math. 41 (1992) 983-1026. CrossRef
Bartsch, T. and Ding, Y., On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313 (1999) 15-37. CrossRef
Benci, V. and Cerami, G., Existence of positive solutions of the equation $-\Delta u+a(x)u= u^{(N+2)/(N-2)}$ in ${\bf R}^N$ . J. Funct. Anal. 88 (1990) 90-117. CrossRef
Buffoni, B., Jeanjean, L. and Stuart, C.A., Existence of nontrivial solutions to a strongly indefinite semilinear equation. Proc. Amer. Math. Soc. 119 (1993) 179-186. CrossRef
J. Chabrowski and A. Szulkin, On a semilinear Schrödinger equation with critical Sobolev exponent. Preprint of Stockholm University.
Chabrowski, J. and Yang, J., Schrödinger, On equation with periodic potential and critical Sobolev exponent. Topol. Meth. Nonl. Anal. 12 (1998) 245-261. CrossRef
Coti-Zelati, V. and Rabinowitz, P.H., Homoclinic type solutions for a semilinear elliptic PDE on ${\bf R}^N$ . Comm. Pure Appl. Math. 45 (1992) 1217-1269.
N. Dunford and J.T. Schwartz, Linear Operators. Part I. Interscience (1967).
Jeanjean, L., Solutions in spectral gaps for a nonlinear equation of Schrödinger type. J. Differential Equations 112 (1994) 53-80. CrossRef
Jeanjean, L., On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on ${\bf R}^N$ . Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787-809. CrossRef
Kryszewski, W. and Szulkin, A., Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv. Differential Equations 3 (1998) 441-472.
P. Kuchment, Floquet Theory for Partial Differential Equations. Birkhäuser, Basel (1993).
On, Y.Y. Li $-\Delta u=K(x) u^5 $ in ${\bf R}^3$ . Comm. Pure Appl. Math. 46 (1993) 303-340.
Prescribing, Y.Y. Li scalar curvature on S n and related problems. Part I. J. Differential Equations 120 (1995) 319-410.
Lions, P.L., The concentration-compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 223-283. CrossRef
M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV. Academic Press (1978).
Schechter, M., Critical point theory with weak-to-weak linking. Comm. Pure Appl. Math. 51 (1998) 1247-1254. 3.0.CO;2-M>CrossRef
M. Schechter, Ratationally invariant periodic solutions of semilinear wave equations. Preprint of the Department of Mathematics, University of California (1998).
M. Schechter, Linking Methods in Critical Point Theory. Birkhäuser, Boston (1999).
Struwe, M., The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 160 (1988) 19-64. CrossRef
C.A. Stuart, Bifurcation into Spectral Gaps. Bull. Belg. Math. Soc. Suppl. (1995).
Szulkin, A. and Zou, W., Homoclinic orbits for asymptotically linear Hamiltonian systems. J. Funct. Anal. 187 (2001) 25-41. CrossRef
Troestler, C. and Willem, M., Nontrivial solution of a semilinear Schrödinger equation. Comm. Partial Differential Equations 21 (1996) 1431-1449. CrossRef
Willem, M. and Zou, W., On a semilinear Dirichlet problem and a nonlinear Schrödinger equation with periodic potential. Indiana Univ. Math. J. 52 (2003) 109-132. CrossRef
M. Willem, Minimax Theorems. Birkhäuser, Boston (1996).
Zou, W., Solitary Waves of the Generalized Kadomtsev-Petviashvili Equations. Appl. Math. Lett. 15 (2002) 35-39. CrossRef
Zou, W., Variant Fountain Theorems and their Applications. Manuscripta Math. 104 (2001) 343-358. CrossRef
Schechter, M., Some recent results in critical point theory. Pan Amer. Math. J. 12 (2002) 1-19.
Schechter, M. and Zou, W., Homoclinic Orbits for Schrödinger Systems. Michigan Math. J. 51 (2003) 59-71.
M. Schechter and W. Zou, Superlinear Problem. Pacific J. Math. (accepted).
Zou, W. and New Linking Theorem, S. Li and Elliptic Systems with Nonlinear Boundary Condition. Nonl. Anal. TMA 52 (2003) 1797-1820. CrossRef