Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T21:02:37.636Z Has data issue: false hasContentIssue false

Regularity properties of the distance functions to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applicationsin Riemannian geometry

Published online by Cambridge University Press:  02 July 2009

Marco Castelpietra
Affiliation:
Université de Nice-Sophia Antipolis, Laboratoire J.-A. Dieudonné, Parc Valrose, 06108 Nice Cedex 02, France. [email protected]; [email protected]
Ludovic Rifford
Affiliation:
Université de Nice-Sophia Antipolis, Laboratoire J.-A. Dieudonné, Parc Valrose, 06108 Nice Cedex 02, France. [email protected]; [email protected]
Get access

Abstract

Given a continuous viscosity solution of a Dirichlet-type Hamilton-Jacobi equation, we show that the distance function to the conjugate locus which is associated to this problem is locally semiconcave on its domain. It allows us to provide a simple proof of the fact that the distance function to the cut locus associated to this problem is locally Lipschitz on its domain. This result, which was already an improvement of a previous one by Itoh and Tanaka [Trans. Amer. Math. Soc. 353 (2001) 21–40], is due to Li and Nirenberg [Comm. Pure Appl. Math. 58 (2005) 85–146]. Finally, we give applications of our results in Riemannian geometry. Namely, we show that the distance function to the conjugate locus on a Riemannian manifold is locally semiconcave. Then, we show that if a Riemannian manifold is a C 4-deformation of the round sphere, then all its tangent nonfocal domains are strictly uniformly convex.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R. Abraham and J.E. Marsden, Foundations of Mechanics. Benjamin, London (1978).
A.A. Agrachev, Geometry of optimal control problems and Hamiltonian systems, in Nonlinear and optimal control theory, Lectures Notes in Mathematics 1932, Springer, Berlin (2008) 1–59.
Alberti, G., Ambrosio, L. and Cannarsa, P., On the singularities of convex functions. Manuscripta Math. 76 (1992) 421435. CrossRef
G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques et Applications 17. Springer-Verlag (1994).
Barles, G. and Perthame, B., Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26 (1988) 11331148. CrossRef
P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control. Birkhauser, Boston (2004).
A. Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics 1764. Springer-Verlag, Berlin (2001).
F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983).
F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics 178. Springer-Verlag, New York (1998).
A. Fathi, Weak KAM Theorem and Lagrangian Dynamics. Cambridge University Press (to appear).
A. Figalli, L. Rifford and C. Villani, Continuity of optimal transport on Riemannian manifolds in presence of focalization. Preprint (2009).
A. Figalli, L. Rifford and C. Villani, On the Ma-Trudinger-Wang curvature on surfaces. Preprint (2009).
A. Figalli, L. Rifford and C. Villani, Nearly round spheres look convex. Preprint (2009).
A. Figalli, L. Rifford and C. Villani, On the stability of Ma-Trudinger-Wang curvature conditions. Comm. Pure Appl. Math. (to appear).
Ishii, H., A simple direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of Eikonal type. Proc. Amer. Math. Soc. 100 (1987) 247251. CrossRef
Itoh, J. and Tanaka, M., The Lipschitz continuity of the distance function to the cut locus. Trans. Amer. Math. Soc. 353 (2001) 2140. CrossRef
Li, Y. and Nirenberg, L., The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Comm. Pure Appl. Math. 58 (2005) 85146. CrossRef
P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations. Pitman, Boston (1982).
G. Loeper and C. Villani, Regularity of optimal transport in curved geometry: the nonfocal case. Duke Math. Journal (to appear).
Pignotti, C., Rectifiability results for singular and conjugate points of optimal exit time problems. J. Math. An. Appl. 270 (2002) 681708. CrossRef
Rifford, L., Morse-Sard, A theorem for the distance function on Riemannian manifolds. Manuscripta Math. 113 (2004) 251265. CrossRef
Rifford, L., On viscosity solutions of certain Hamilton-Jacobi equations: Regularity results and generalized Sard's Theorems. Comm. Partial Differ. Equ. 33 (2008) 517559. CrossRef
L. Rifford, Nonholonomic Variations: An Introduction to Subriemannian Geometry. Monograph (in preparation).
T. Sakai, Riemannian geometry, Translations of Mathematical Monographs 149. American Mathematical Society, Providence, USA (1996).
C. Villani, Optimal transport, old and new, Grundlehren des mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338. Springer-Verlag, Berlin (2009).
Zajicek, L., On the points of multiplicity of monotone operators. Comment. Math. Univ. Carolinae 19 (1978) 179189.