Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T05:05:23.032Z Has data issue: false hasContentIssue false

Oscillations and concentrations generatedby ${\mathcal A}$ -freemappings and weak lower semicontinuityof integral functionals

Published online by Cambridge University Press:  21 April 2009

Irene Fonseca
Affiliation:
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA. [email protected]
Martin Kružík
Affiliation:
Institute of Information Theory and Automation of the ASCR, Pod vodárenskou věží 4, 182 08 Praha 8, Czech Republic. Faculty of Civil Engineering, Czech Technical University, Thákurova 7, 166 29 Praha 6, Czech Republic. [email protected]
Get access

Abstract

DiPerna's and Majda's generalization of Young measures is used to describe oscillations and concentrations in sequences of maps $\{u_k\}_{k\in{\mathbb N}} \subset L^p(\Omega;{\mathbb R}^m)$ satisfying a linear differential constraint ${\mathcal A}u_k=0$ . Applications to sequential weak lower semicontinuity of integral functionals on ${\mathcal A}$ -free sequences and to weak continuity of determinants are given. In particular, we state necessary and sufficient conditions for weak* convergence of det $\nabla\varphi_k\stackrel{*}{\rightharpoonup}{\rm det}\nabla\varphi$ in measures on the closure of $\Omega\subset{\mathbb R}^n$ if $\varphi_k\rightharpoonup\varphi$ in $W^{1,n}(\Omega;{\mathbb R}^n)$ . This convergence holds, for example, under Dirichlet boundary conditions. Further, we formulate a Biting-like lemmaprecisely stating which subsets $\Omega_j\subset \Omega$ must be removed to obtain weak lower semicontinuity of $u\mapsto\int_{\Omega\setminus\Omega_j} v(u(x))\,{\rm d}x$ along $\{u_k\}\subset L^p(\Omega;{\mathbb R}^m)\cap{\rm ker}\ {\mathcal A}$ . Specifically, $\Omega_j$ are arbitrarily thin “boundary layers”.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alibert, J.J. and Bouchitté, G., Non-uniform integrability and generalized Young measures. J. Convex Anal. 4 (1997) 125145.
J.M. Ball, A version of the fundamental theorem for Young measures, in PDEs and Continuum Models of Phase Transition, M. Rascle, D. Serre and M. Slemrod Eds., Lect. Notes Phys. 344, Springer, Berlin (1989) 207–215.
Ball, J.M. and Murat, F., W 1,p -quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225253. CrossRef
Ball, J.M. and Zhang, K.-W., Lower semicontinuity of multiple integrals and the biting lemma. Proc. Roy. Soc. Edinb. A 114 (1990) 367379. CrossRef
Braides, A., Fonseca, I. and Leoni, G., A-quasiconvexity: relaxation and homogenization. ESAIM: COCV 5 (2000) 539577. CrossRef
Brooks, J.K. and Chacon, R.V., Continuity and compactness in measure. Adv. Math. 37 (1980) 1626. CrossRef
B. Dacorogna, Direct Methods in the Calculus of Variations. Springer, Berlin (1989).
DeSimone, A., Energy minimizers for large ferromagnetic bodies. Arch. Rat. Mech. Anal. 125 (1993) 99143. CrossRef
DiPerna, R.J. and Majda, A.J., Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108 (1987) 667689. CrossRef
N. Dunford and J.T. Schwartz, Linear Operators, Part I. Interscience, New York (1967).
R. Engelking, General topology. Second Edition, PWN, Warszawa (1985).
L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Inc. Boca Raton (1992).
Fonseca, I., Lower semicontinuity of surface energies. Proc. Roy. Soc. Edinb. A 120 (1992) 95115. CrossRef
I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces. Springer (2007).
Fonseca, I. and Müller, S., ${\mathcal A}$ -quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 13551390. CrossRef
Fonseca, I., Müller, S. and Pedregal, P., Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736756. CrossRef
Hogan, J., Li, C., McIntosh, A. and Zhang, K., Global higher integrability of Jacobians on bounded domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 193217. CrossRef
Kałamajska, A. and Kružík, M., Oscillations and concentrations in sequences of gradients. ESAIM: COCV 14 (2008) 71104. CrossRef
Kinderlehrer, D. and Pedregal, P., Characterization of Young measures generated by gradients. Arch. Rat. Mech. Anal. 115 (1991) 329365. CrossRef
Kinderlehrer, D. and Pedregal, P., Weak convergence of integrands and the Young measure representation. SIAM J. Math. Anal. 23 (1992) 119.
Kinderlehrer, D. and Pedregal, P., Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994) 5990. CrossRef
Kristensen, J., Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313 (1999) 653710. CrossRef
Kružík, M. and Roubíček, T., Explicit characterization of Lp -Young measures. J. Math. Anal. Appl. 198 (1996) 830843. CrossRef
Kružík, M. and Roubíček, T., On the measures of DiPerna and Majda. Mathematica Bohemica 122 (1997) 383399.
Kružík, M. and Roubíček, T., Optimization problems with concentration and oscillation effects: relaxation theory and numerical approximation. Numer. Funct. Anal. Optim. 20 (1999) 511530. CrossRef
Licht, C., Michaille, G. and Pagano, S., A model of elastic adhesive bonded joints through oscillation-concentration measures. J. Math. Pures Appl. 87 (2007) 343365. CrossRef
Marcellini, P., Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscripta Math. 51 (1985) 128. CrossRef
C.B. Morrey, Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966).
Müller, S., Higher integrability of determinants and weak convergence in L1 . J. Reine Angew. Math. 412 (1990) 2034.
Müller, S., Variational models for microstructure and phase transisions. Lect. Notes Math. 1713 (1999) 85210. CrossRef
P. Pedregal, Relaxation in ferromagnetism: the rigid case, J. Nonlinear Sci. 4 (1994) 105–125.
P. Pedregal, Parametrized Measures and Variational Principles. Birkäuser, Basel (1997).
T. Roubíček, Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin (1997).
Schonbek, M.E., Convergence of solutions to nonlinear dispersive equations. Comm. Partial Diff. Eq. 7 (1982) 9591000.
L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics, R.J. Knops Ed., Heriott-Watt Symposium IV, Pitman Res. Notes in Math. 39, San Francisco (1979).
L. Tartar, Mathematical tools for studying oscillations and concentrations: From Young measures to H-measures and their variants, in Multiscale problems in science and technology. Challenges to mathematical analysis and perspectives, N. Antonič, C.J. Van Duijin and W. Jager Eds., Proceedings of the conference on multiscale problems in science and technology, held in Dubrovnik, Croatia, September 3–9, 2000, Springer, Berlin (2002).
M. Valadier, Young measures, in Methods of Nonconvex Analysis, A. Cellina Ed., Lect. Notes Math. 1446, Springer, Berlin (1990) 152–188.
J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York (1972).
L.C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30 (1937) 212–234.