Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T20:07:31.574Z Has data issue: false hasContentIssue false

Critical points of Ambrosio-Tortorelli convergeto critical points of Mumford-Shahin the one-dimensional Dirichlet case

Published online by Cambridge University Press:  24 June 2008

Gilles A. Francfort
Affiliation:
LPMTM, Université Paris 13, Av. J.B. Clément, 93430 Villetaneuse, France. [email protected]
Nam Q. Le
Affiliation:
Courant Institute of Mathematical Sciences, 251 Mercer St, New York, NY 10012, USA. [email protected]
Sylvia Serfaty
Affiliation:
Courant Institute of Mathematical Sciences, 251 Mercer St, New York, NY 10012, USA. [email protected]
Get access

Abstract

Critical points of a variant of the Ambrosio-Tortorelli functional,for which non-zero Dirichlet boundary conditions replace thefidelity term, are investigated. They are shown to converge toparticular critical points of the corresponding variant of theMumford-Shah functional; those exhibit many symmetries. ThatDirichlet variant is the natural functional when addressing aproblem of brittle fracture in an elastic material.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrosio, L., Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111 (1990) 291322. CrossRef
Ambrosio, L. and Tortorelli, V.M., Approximation of functionals depending on jumps by elliptic functionals via Γ -convergence. Comm. Pure Appl. Math. 43 (1990) 9991036. CrossRef
Ambrosio, L. and Tortorelli, V.M., On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7) 6 (1992) 105123.
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000).
F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications 13. Birkhäuser Boston Inc., Boston, MA (1994).
Bourdin, B., Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound. 9 (2007) 411430. CrossRef
A. Braides, Γ-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press (2002).
De Giorgi, E., Carriero, M. and Leaci, A., Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108 (1989) 195218. CrossRef
L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992).
Francfort, G.A. and Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 13191342. CrossRef
Hutchinson, J.E. and Tonegawa, Y., Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Partial Differential Equations 10 (2000) 4984. CrossRef
Modica, L. and Mortola, S., Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14 (1977) 526529.
D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. XLII (1989) 577–685.
P.J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics 107. Springer-Verlag, New York (1986).
E. Sandier and S. Serfaty, Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications 70. Birkhäuser Boston Inc., Boston, MA (2007).
Tonegawa, Y., Phase field model with a variable chemical potential. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002) 9931019. CrossRef
Tonegawa, Y., A diffused interface whose chemical potential lies in a Sobolev space. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005) 487510.
T. Wittman, Lost in the supermarket: decoding blurry barcodes. SIAM News 37 September (2004).