Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T02:04:43.130Z Has data issue: false hasContentIssue false

3D-2D Asymptotic Analysis for Micromagnetic Thin Films

Published online by Cambridge University Press:  15 August 2002

Roberto Alicandro
Affiliation:
SISSA, Via Beirut 4, 34013 Trieste, Italy; [email protected].
Chiara Leone
Affiliation:
Dipartimento di Matematica, Università di Roma I, P.le A. Moro 2, 00185 Roma, Italy; [email protected].
Get access

Abstract

Γ-convergence techniques and relaxation results of constrained energy functionals are used to identify the limiting energy as the thickness ε approaches zero of a ferromagnetic thin structure $\Omega_\varepsilon=\omega\times(-\varepsilon,\varepsilon)$, $\omega\subset\mathbb R^2$, whose energy is given by $$ {\cal E}_{\varepsilon}({\overline{m}})=\frac{1}{\varepsilon} \int_{\Omega_{\varepsilon}}\left(W({\overline{m}},\nabla{\overline{m}}) +{\frac{1}{2}}\nabla {\overline{u}}\cdot {\overline{m}}\right)\,{\rm d}x $$ subject to $$ \hbox{div}(-\nabla {\overline{u}}+{\overline{m}}\chi_{\Omega_\varepsilon})=0 \quad\hbox{ on }\mathbb R^3, $$ and to the constraint $$ |\overline{m}|=1 \hbox{ on }\Omega_\varepsilon, $$ where W is any continuous function satisfying p-growth assumptions with p> 1. Partial results are also obtained in the case p=1, under an additional assumption on W.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998).
A. Braides and I. Fonseca, Brittle thin films, Preprint CNA-CMU. Pittsburgh (1999).
A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films, Preprint CNA-CMU. Pittsburgh (1999).
W.F. Brown, Micromagnetics. John Wiley and Sons, New York (1963).
C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Springer-Verlag, New York, Lecture Notes in Math. 580 (1977).
B. Dacorogna, Direct methods in Calculus of Variations. Springer-Verlag, Berlin (1989).
Dacorogna, B., Fonseca, I., Maly, J. and Trivisa, K., Manifold constrained variational problems. Calc. Var. 9 (1999) 185-206. CrossRef
G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser, Boston (1993).
Fonseca, I. and Francfort, G., 3D-2D asymptotic analysis of an optimal design problem for thin films. J. Reine Angew. Math. 505 (1998) 173-202.
I. Fonseca and G. Francfort, On the inadequacy of the scaling of linear elasticity for 3D-2D asymptotic in a nonlinear setting, Preprint CNA-CMU. Pittsburgh (1999).
Fonseca, I. and Müller, S., Quasi-convex integrands and lower semicontinuity in L 1. SIAM J. Math. Anal. 23 (1992) 1081-1098. CrossRef
Gioia, G. and James, R.D., Micromagnetics of very thin films. Proc. Roy. Soc. Lond. Ser. A 453 (1997) 213-223. CrossRef
Morrey, C.B., Quasiconvexity and the semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. CrossRef
C.B. Morrey, Multiple integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966).