Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Bergelson, V.
Boshernitzan, M.
and
Bourgain, J.
1994.
Some results on non-linear recurrence.
Journal d'Analyse Mathématique,
Vol. 62,
Issue. 1,
p.
29.
Leibman, A.
1994.
Multiple recurrence theorem for nilpotent group actions.
Geometric and Functional Analysis,
Vol. 4,
Issue. 6,
p.
648.
Zhang, Qing
1996.
On convergence of the averages $$\frac{1}{N}\sum\nolimits_{n = 1}^N {f_1 (R^n x)f_2 (S^n x)f_3 (T^n x)} $$.
Monatshefte f�r Mathematik,
Vol. 122,
Issue. 3,
p.
275.
Bergelson, V.
and
Leibman, A.
1996.
Polynomial extensions of van der Waerden’s and Szemerédi’s theorems.
Journal of the American Mathematical Society,
Vol. 9,
Issue. 3,
p.
725.
Furstenberg, Hillel
and
Weiss, Benjamin
1996.
Convergence in Ergodic Theory and Probability.
p.
193.
Blume, Frank
2002.
Handbook of Measure Theory.
p.
1185.
Shalom, Yehuda
2004.
Harmonic analysis, cohomology, and the large-scale geometry of amenable groups.
Acta Mathematica,
Vol. 192,
Issue. 2,
p.
119.
Host, Bernard
and
Kra, Bryna
2005.
Convergence of polynomial ergodic averages.
Israel Journal of Mathematics,
Vol. 149,
Issue. 1,
p.
1.
Kra, Bryna
2005.
The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view.
Bulletin of the American Mathematical Society,
Vol. 43,
Issue. 1,
p.
3.
Bergelson, Vitaly
Host, Bernard
Kra, Bryna
and
Ruzsa, Imre
2005.
Multiple recurrence and nilsequences.
Inventiones mathematicae,
Vol. 160,
Issue. 2,
p.
261.
Frantzikinakis, Nikos
and
Kra, Bryna
2005.
Polynomial averages converge to the product of integrals.
Israel Journal of Mathematics,
Vol. 148,
Issue. 1,
p.
267.
Leibman, A.
2005.
Convergence of multiple ergodic averages along polynomials of several variables.
Israel Journal of Mathematics,
Vol. 146,
Issue. 1,
p.
303.
Bergelson, V.
Leibman, A.
and
McCutcheon, R.
2005.
Polynomial Szemerédi theorems for countable modules over integral domains and finite fields.
Journal d'Analyse Mathématique,
Vol. 95,
Issue. 1,
p.
243.
Ziegler, Tamar
2006.
Universal characteristic factors and Furstenberg averages.
Journal of the American Mathematical Society,
Vol. 20,
Issue. 1,
p.
53.
Bergelson, Vitaly
LeibmanM, A.
Quas, Anthony
and
Wierdl, Máté
2006.
Vol. 1,
Issue. ,
p.
745.
2006.
Dynamic Random Walks.
p.
249.
Bergelson, V.
Leibman, A.
and
Lesigne, E.
2007.
Complexities of finite families of polynomials, Weyl systems, and constructions in combinatorial number theory.
Journal d'Analyse Mathématique,
Vol. 103,
Issue. 1,
p.
47.
Tao, Terence
and
Ziegler, Tamar
2008.
The primes contain arbitrarily long polynomial progressions.
Acta Mathematica,
Vol. 201,
Issue. 2,
p.
213.
Junco, Andrés del
2009.
Encyclopedia of Complexity and Systems Science.
p.
2933.
Quas, Anthony
2009.
Encyclopedia of Complexity and Systems Science.
p.
2918.