Published online by Cambridge University Press: 07 October 2019
Let $m\in \mathbb{N}$ and $\mathbf{X}=(X,{\mathcal{X}},\unicode[STIX]{x1D707},(T_{\unicode[STIX]{x1D6FC}})_{\unicode[STIX]{x1D6FC}\in \mathbb{R}^{m}})$ be a measure-preserving system with an $\mathbb{R}^{m}$-action. We say that a Borel measure $\unicode[STIX]{x1D708}$ on $\mathbb{R}^{m}$ is weakly equidistributed for $\mathbf{X}$ if there exists $A\subseteq \mathbb{R}$ of density 1 such that, for all $f\in L^{\infty }(\unicode[STIX]{x1D707})$, we have