Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T09:15:24.995Z Has data issue: false hasContentIssue false

Wandering intervals in affine extensions of self-similar interval exchange maps: the cubic Arnoux–Yoccoz map

Published online by Cambridge University Press:  08 May 2017

MILTON COBO
Affiliation:
Departamento de Matemática, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Goiabeiras, Vitória, Brasil email [email protected]
RODOLFO GUTIÉRREZ-ROMO
Affiliation:
Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, CNRS-UMI 2807, Universidad de Chile, Beauchef 851, Santiago, Chile email [email protected], [email protected]
ALEJANDRO MAASS
Affiliation:
Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, CNRS-UMI 2807, Universidad de Chile, Beauchef 851, Santiago, Chile email [email protected], [email protected]

Abstract

In this article, we provide sufficient conditions on a self-similar interval exchange map, whose renormalization matrix has complex eigenvalues of modulus greater than one, for the existence of affine interval exchange maps with wandering intervals that are semi-conjugate with it. These conditions are based on the algebraic properties of the complex eigenvalues and the complex fractals built from the natural substitution emerging from self-similarity. We show that the cubic Arnoux–Yoccoz interval exchange map satisfies these conditions.

Type
Original Article
Copyright
© Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnoux, P., Bernat, J. and Bressaud, X.. Geometrical models for substitutions. Exp. Math. 20(1) (2011), 97127.Google Scholar
Arnoux, P. and Yoccoz, J.-C.. Construction de difféomorphismes pseudo-Anosov. C. R. Acad. Sci. Paris Sér. I Math. 292(1) (1981), 7578.Google Scholar
Barreto, R.. 1999 On $C^{r}$ -class of conjugacy between affine interval exchange maps and its isometric model. PhD Thesis, Instituto Nacional de Matemática Pura e Aplicada.Google Scholar
Bressaud, X., Bufetov, A. I. and Hubert, P.. Deviation of ergodic averages for substitution dynamical systems with eigenvalues of modulus 1. Proc. Lond. Math. Soc. (3) 109(2) (2014), 483522.Google Scholar
Bressaud, X., Hubert, P. and Maass, A.. Persistence of wandering intervals in self-similar affine interval exchange transformations. Ergod. Th. & Dynam. Sys. 30(3) (2010), 665686.Google Scholar
Camelier, R. and Gutiérrez, C.. Affine interval exchange transformations with wandering intervals. Ergod. Th. & Dynam. Sys. 17(6) (1997), 13151338.Google Scholar
Cobo, M.. Piece-wise affine maps conjugate to interval exchanges. Ergod. Th. & Dynam. Sys. 22(2) (2002), 375407.Google Scholar
Canterini, V. and Siegel, A.. Automate des préfixes-suffixes associé à une substitution primitive. J. Théor. Nombres Bordeaux 13(2) (2001), 353369.Google Scholar
Denjoy, A.. Sur les courbes définies par les équations différentielles à la surface du tore. J. Math. Pures Appl. (9) 11(9) (1932), 333376.Google Scholar
Fogg, P.. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in Mathematics, 1794) . Springer, Berlin, 2002.Google Scholar
Keane, M.. Interval exchange transformations. Math. Z. 141(1) (1975), 2531.Google Scholar
Levitt, G.. La décomposition dynamique et la différentiabilité des feuilletages des surfaces. Ann. Inst. Fourier (Grenoble) 37(3) (1987), 85116.Google Scholar
Lowenstein, J. H., Poggiaspalla, G. and Vivaldi, F.. Interval exchange transformations over algebraic number fields: the cubic Arnoux–Yoccoz model. Dyn. Syst. 22(1) (2007), 73106.Google Scholar
Lowenstein, J. H., Poggiaspalla, G. and Vivaldi, F.. Geometric representation of interval exchange maps over algebraic number fields. Nonlinearity 21(1) (2008), 149177.Google Scholar
Messaoudi, A.. Frontière du fractal de Rauzy et système de numération complexe. Acta Arith. 95(3) (2000), 195224.Google Scholar
Marmi, S., Moussa, P. and Yoccoz, J.-C.. Affine interval exchange maps with a wandering interval. Proc. Lond. Math. Soc. (3) 100(3) (2010), 639669.Google Scholar
Mossé, B.. Puissances de mots et reconnaissabilité des points fixes d’une substitution. Theoret. Comput. Sci. 99(2) (1992), 327334.Google Scholar
Queffélec, M.. Substitution Dynamical Systems—Spectral Analysis (Lecture Notes in Mathematics, 1294) . Springer, Berlin, 1987.Google Scholar
Veech, W.. Interval exchange transformations. J. Anal. Math. 33(1) (1978), 222272.Google Scholar
Veech, W.. Gauss measures for transformations on the space of interval exchange maps. Ann. of Math. (2) 115(1) (1982), 201242.Google Scholar
Veech, W.. The metric theory of interval exchange transformations I. Generic spectral properties. Amer. J. Math. 106(6) (1984), 13311359.Google Scholar
Viana, M.. Ergodic theory of interval exchange maps. Rev. Mat. Complut. 19(1) (2006), 7100.Google Scholar
Zorich, A.. Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents. Ann. Inst. Fourier (Grenoble) 46(2) (1996), 325370.Google Scholar