Published online by Cambridge University Press: 26 June 2019
Eagleson’s theorem asserts that, given a probability-preserving map, if renormalized Birkhoff sums of a function converge in distribution, then they also converge with respect to any probability measure which is absolutely continuous with respect to the invariant one. We prove a version of this result for almost sure limit theorems, extending results of Korepanov. We also prove a version of this result, in mixing systems, when one imposes a conditioning both at time 0 and at time $n$.