Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T16:48:59.288Z Has data issue: false hasContentIssue false

Unitary representations of wavelet groups and encoding of iterated function systems in solenoids

Published online by Cambridge University Press:  12 March 2009

DORIN ERVIN DUTKAY
Affiliation:
Department of Mathematics, University of Central Florida, 4000 Central Florida Blvd., PO Box 161364, Orlando, FL 32816-1364, USA (email: [email protected])
PALLE E. T. JORGENSEN
Affiliation:
Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242-1419, USA (email: [email protected])
GABRIEL PICIOROAGA
Affiliation:
Department of Mathematical Sciences, Binghamton University, Binghamton, NY 13902-6000, USA (email: [email protected])

Abstract

For points in d real dimensions, we introduce a geometry for general digit sets. We introduce a positional number system where the basis for our representation is a fixed d by d matrix over ℤ. Our starting point is a given pair (A,𝒟) with the matrix A assumed expansive, and 𝒟 a chosen complete digit set, i.e., in bijective correspondence with the points in ℤd/ATd. We give an explicit geometric representation and encoding with infinite words in letters from 𝒟. We show that the attractor X(AT,𝒟) for an affine Iterated Function System (IFS) based on (A,𝒟) is a set of fractions for our digital representation of points in ℝd. Moreover our positional ‘number representation’ is spelled out in the form of an explicit IFS-encoding of a compact solenoid 𝒮A associated with the pair (A,𝒟). The intricate part (Theorem 6.15) is played by the cycles in ℤd for the initial (A,𝒟)-IFS. Using these cycles we are able to write down formulas for the two maps which do the encoding as well as the decoding in our positional 𝒟-representation. We show how some wavelet representations can be realized on the solenoid, and on symbolic spaces.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arveson, W.. A Short Course on Spectral Theory (Graduate Texts in Mathematics, 209). Springer, New York, 2002.CrossRefGoogle Scholar
[2]Akiyama, S. and Scheicher, K.. From number systems to shift radix systems. Nihonkai Math. J. 16(2) (2005), 95106.Google Scholar
[3]Bildea, S., Dutkay, D. E. and Picioroaga, G.. MRA super-wavelets. New York J. Math. 11 (2005), 119 electronic.Google Scholar
[4]Barnsley, M., Hutchinson, J. and Stenflo, Ö.. A fractal valued random iteration algorithm and fractal hierarchy. Fractals 13(2) (2005), 111146.CrossRefGoogle Scholar
[5]Bratteli, O. and Jorgensen, P. E. T.. Iterated function systems and permutation representations of the Cuntz algebra. Mem. Amer. Math. Soc. 139(663) (1999), x+89.Google Scholar
[6]Bratteli, O., Jorgensen, P. E. T., Kim, K. H. and Roush, F.. Decidability of the isomorphism problem for stationary AF-algebras and the associated ordered simple dimension groups. Ergod. Th. & Dynam. Sys. 21(6) (2001), 16251655.CrossRefGoogle Scholar
[7]Baggett, L., Jorgensen, P., Merrill, K. and Packer, J.. A non-MRA Cr frame wavelet with rapid decay. Acta Appl. Math. 89(1–3) (2006), 251270 2005CrossRefGoogle Scholar
[8]Baggett, L. W., Medina, H. A. and Merrill, K. D.. Generalized multi-resolution analyses and a construction procedure for all wavelet sets in ℝn. J. Fourier Anal. Appl. 5(6) (1999), 563573.CrossRefGoogle Scholar
[9]Bałaban, T., O’Carroll, M. and Schor, R.. Properties of block renormalization group operators for Euclidean fermions in an external gauge field. J. Math. Phys. 32(11) (1991), 31993208.CrossRefGoogle Scholar
[10]Cho, I.. Characterization of amalgamated free blocks of a graph von Neumann algebra. Complex Anal. Oper. Theory 1(3) (2007), 367398.CrossRefGoogle Scholar
[11]Curry, E.. Radix representations, self-affine tiles, and multivariable wavelets. Proc. Amer. Math. Soc. 134(8) (2006), 24112418 electronic.CrossRefGoogle Scholar
[12]Dutkay, D. E. and Jorgensen, P. E. T.. Hilbert spaces built on a similarity and on dynamical renormalization. J. Math. Phys. 47(5) (2006), 053504, 20CrossRefGoogle Scholar
[13]Dutkay, D. E. and Jorgensen, P. E. T.. Iterated function systems, Ruelle operators, and invariant projective measures. Math. Comp. 75(256) (2006), 19311970 electronic.CrossRefGoogle Scholar
[14]Dutkay, D. E. and Jorgensen, P. E. T.. Iterated function systems, Ruelle operators, and invariant projective measures. Math. Comp. 75(256) (2006), 19311970 electronic.CrossRefGoogle Scholar
[15]Dutkay, D. E. and Jorgensen, P. E. T.. Methods from multiscale theory and wavelets applied to nonlinear dynamics. Wavelets, Multiscale Systems and Hypercomplex Analysis (Operator Advances and Applications, 167). Birkhäuser, Basel, 2006, pp. 87126.CrossRefGoogle Scholar
[16]Dutkay, D. E. and Jorgensen, P. E. T.. Disintegration of projective measures. Proc. Amer. Math. Soc. 135(1) (2007), 169179 electronic.CrossRefGoogle Scholar
[17]Dutkay, D. E. and Jorgensen, P. E. T.. A duality approach to representations of baumslag–solitar groups. Preprint 2007, arXiv:0704.2050, 2007.CrossRefGoogle Scholar
[18]Dutkay, D. E. and Jorgensen, P. E. T.. Fourier frequencies in affine iterated function systems. J. Funct. Anal. 247(1) (2007), 110137.CrossRefGoogle Scholar
[19]Dutkay, D. E.. Low-pass filters and representations of the Baumslag Solitar group. Trans. Amer. Math. Soc. 358(12) (2006), 52715291 electronic.CrossRefGoogle Scholar
[20]Federbush, P.. A phase cell approach to Yang-Mills theory. VI. Nonabelian lattice-continuum duality. Ann. Inst. H. Poincaré Phys. Théor. 47(1) (1987), 1723.Google Scholar
[21]Federbush, P.. Navier and Stokes meet the wavelet. II. Mathematical Quantum Theory. I. Field Theory and Many-body Theory (Vancouver, BC, 1993) (CRM Proceedings Lecture Notes, 7). American Mathematical Society, Providence, RI, 1994, pp. 163169.CrossRefGoogle Scholar
[22]Farkas, B., Matolcsi, M. and Móra, P.. On Fuglede’s conjecture and the existence of universal spectra. J. Fourier Anal. Appl. 12(5) (2006), 483494.CrossRefGoogle Scholar
[23]Fuglede, B.. Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16 (1974), 101121.CrossRefGoogle Scholar
[24]Gabardo, J.-P. and Yu, X.. Natural tiling, lattice tiling and Lebesgue measure of integral self-affine tiles. J. London Math. Soc. (2) 74(1) (2006), 184204.CrossRefGoogle Scholar
[25]Han, D. and Larson, D. R.. Frames, bases and group representations. Mem. Amer. Math. Soc. 147(697) (2000), x+94.Google Scholar
[26]He, X.-G. and Lau, K.-S.. Characterization of tile digit sets with prime determinants. Appl. Comput. Harmon. Anal. 16(3) (2004), 159173.CrossRefGoogle Scholar
[27]He, X.-G., Lau, K.-S. and Rao, H.. On the self-affine sets and the scaling functions. Wavelet Analysis (Hong Kong, 2001) (Series in Analysis, 1). World Sci. Publ, River Edge, NJ, 2002, pp. 179195.CrossRefGoogle Scholar
[28]Hutchinson, J. E.. Fractals and self-similarity. Indiana Univ. Math. J. 30(5) (1981), 713747.CrossRefGoogle Scholar
[29]Jorgensen, P. E. T., Kornelson, K. and Shuman, K.. Harmonic analysis of iterated function systems with overlap. J. Math. Phys. 48(8) (2007), 083511, 35CrossRefGoogle Scholar
[30]Jorgensen, P. E. T.. Matrix factorizations, algorithms, wavelets. Notices Amer. Math. Soc. 50(8) (2003), 880894.Google Scholar
[31]Kenyon, R., Li, J., Strichartz, R. S. and Wang, Y.. Geometry of self-affine tiles. II. Indiana Univ. Math. J. 48(1) (1999), 2542.Google Scholar
[32]Knuth, D. E.. The Art of Computer Programming. Vol. 1: Fundamental Algorithms, Second printing. Addison-Wesley Publishing Co, Reading, MA, 1969.Google Scholar
[33]Knuth, D. E.. The State of the Art of Computer Programming (Computer Science Department, School of Humanities and Sciences, Stanford University, Stanford, Calif., 1976; Errata to The art of computer programming, Vols. 1 and 2). Addison-Wesley, Reading, Mass, 1969, STAN-CS-76-551Google Scholar
[34]Koch, H. and Wittwer, P.. Computing bounds on critical indices. Nonlinear Evolution and Chaotic Phenomena (Noto, 1987) (NATO Advanced Science Institutes Series B: Physics, 176). Plenum, New York, 1988, pp. 269277.CrossRefGoogle Scholar
[35]Koch, H. and Wittwer, P.. On the renormalization group transformation for scalar hierarchical models. Comm. Math. Phys. 138(3) (1991), 537568.CrossRefGoogle Scholar
[36]Li, J.-L.. Digit sets of integral self-affine tiles with prime determinant. Studia Math. 177(2) (2006), 183194.CrossRefGoogle Scholar
[37]Li, J.-L.. Spectral self-affine measures in ℝN. Proc. Edinb. Math. Soc. (2) 50(1) (2007), 197215.CrossRefGoogle Scholar
[38]Lagarias, J. C. and Wang, Y.. Haar bases for L2(Rn) and algebraic number theory. J. Number Theory 57(1) (1996), 181197.CrossRefGoogle Scholar
[39]Lagarias, J. C. and Wang, Y.. Integral self-affine tiles in ℝn. I. Standard and nonstandard digit sets. J. London Math. Soc. (2) 54(1) (1996), 161179.CrossRefGoogle Scholar
[40]Lagarias, J. C. and Wang, Y.. Self-affine tiles in Rn. Adv. Math. 121(1) (1996), 2149.CrossRefGoogle Scholar
[41]Lagarias, J. C. and Wang, Y.. Integral self-affine tiles in Rn. II. Lattice tilings. J. Fourier Anal. Appl. 3(1) (1997), 83102.CrossRefGoogle Scholar
[42]Lagarias, J. C. and Wang, Y.. Orthogonality criteria for compactly supported refinable functions and refinable function vectors. J. Fourier Anal. Appl. 6(2) (2000), 153170.CrossRefGoogle Scholar
[43]Odlyzko, A. M.. Nonnegative digit sets in positional number systems. Proc. London Math. Soc. (3) 37(2) (1978), 213229.CrossRefGoogle Scholar
[44]Pedersen, S.. Spectral sets whose spectrum is a lattice with a base. J. Funct. Anal. 141(2) (1996), 496509.CrossRefGoogle Scholar
[45]Rudin, W.. Fourier analysis on groups. Interscience Tracts in Pure and Applied Mathematics, No. 12. Interscience Publishers (a division of John Wiley and Sons), New York, 1962.Google Scholar
[46]Rudolph, D. J.. Markov tilings of Rn and representations of Rn actions. Measure and Measurable Dynamics (Rochester, NY, 1987) (Contemporary Mathematics, 94). American Mathematical Society, Providence, RI, 1989, pp. 271290.CrossRefGoogle Scholar
[47]Safer, T.. Radix representations of algebraic number fields and finite automata. STACS 98 (Paris, 1998) (Lecture Notes in Computer Science, 1373). Springer, Berlin, 1998, pp. 356365.CrossRefGoogle Scholar
[48]Shuman, K. L.. Complete signal processing bases and the Jacobi group. J. Math. Anal. Appl. 278(1) (2003), 203213.CrossRefGoogle Scholar
[49]Strichartz, R. S.. Solvability for differential equations on fractals. J. Anal. Math. 96 (2005), 247267.CrossRefGoogle Scholar
[50]Strichartz, R. S.. Differential Equations on Fractals. Princeton University Press, Princeton, NJ, 2006, A tutorial.CrossRefGoogle Scholar
[51]Zhang, T., Liu, J. and Zhuang, Z.. Multi-dimensional piece-wise self-affine fractal interpolation model in tensor form. Adv. Complex Syst. 9(3) (2006), 287293.CrossRefGoogle Scholar