Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T03:23:45.207Z Has data issue: false hasContentIssue false

Un exemple de transformation dilatante et C1 par morceaux de l'intervalle, sans probabilité absolument continue invariante

Published online by Cambridge University Press:  19 September 2008

P. Gora
Affiliation:
Warsaw University, Institute of Mathematics, PKIN IX p, 00-901 Warsaw, Poland
B. Schmitt
Affiliation:
Département de Math., UFR Sciences et Techniques, Universite de Dijon, 21000 Dijon, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct a transformation on the interval [0, 1] into itself, piecewiseC1 and expansive, which doesn't admit any absolutely continuous invariant probability measure (a.c.i.p.).

So in this case we give a negative answer to a question by Anosov: is C1 character sufficient for the existence of absolutely continuous measure?

Moreover, in our example,ƒ' has a modulus of type K/(|1+|log|x‖); it is known that a modulus of continuity of type K/(1+|log|x‖)1+γ, γ>0 implies the existence of a.c.i.p..

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

REFERENCES

[An]Anosov, D.. Geodesic flows on closed Riemann manifolds with negative curvature. Proc. Steklov Institute of mathematics no. 90 (1967). Translated by: Amer. Math. Soc: Providence, Rhode Island, 1969Google Scholar
[Co]Collet, P.. Preprint. Ecole Polytechnique. Centre physique théorique: Palaiseau.Google Scholar
[Co-Ec]Collet, P. & Eckman, J. P.. Iterated Maps on the Interval as Dynamical Systems. Birkhäuser: 1980.Google Scholar
[Ke]Keller, G.. Generalized bounded variation and applications to piecewise monotonic transformations. Z. Warscheinlichkeitstheorie 69 (1985), 461478.CrossRefGoogle Scholar
[Ko]Kowalski, Z.. Invariant measures for piecewise monotonic transformations. Ins. Proc.4th Winter-School on Prob. Karpacz, Poland, 1975. pp. 7794. Led. Notes Math. 472, Springer; Berlin-Heidelberg-New-York, 1975.Google Scholar
[Ko-Sa]Kosjalin, A. A. & Sandier, E. A.. Ergodic properties of a certain class of piecewise smooth transformations of a segment (in Russian). Izvestija Vyssih Ucebryh Zaredinu, Matematika 3 (1972), 3240.Google Scholar
[Kr1]Kryzewski, K.. On expanding mappings. Bull. Acad. Pol. Sci. Série Sciences Mathematiques, Astronomiques et Physiques 19 (1971), 2324.Google Scholar
[Kr2]Kryzewski, K.. A remark on expanding mappings. Coll. Math. 41 (1979), 291295.CrossRefGoogle Scholar
[La-Y]Lasota, A. & Yorke, J. A.. On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973), 481488.CrossRefGoogle Scholar
[Mi]Misiurewicz, M.. Absolutely continuous measures for certain maps of an interval. Publications mathématiques de VIHES 53 (1981)Google Scholar
[Ne]Neveu, J.. Bases Mathématiques du Calcul des Probabilités Masson et Cie: Paris, 1964.Google Scholar
[Pa]Parry, W.. On the β-expansion for real numbers. Acta. Math. Acad. Sc. Hungar. 11 (1960), 401416.CrossRefGoogle Scholar
[Re]Renyi, A.. Representations for real numbers and their ergodic properties. Acta. Math. Acad. Sc. Hungar. 8 (1957), 477493.CrossRefGoogle Scholar
[Ry]Rychlik, M.. Invariant measures for piecewise monotonic, piecewise C 1+E transformations. Preprint Warsaw University.Google Scholar
[Sc]Schmitt, B.. Condition d'existence d'une mesure de probabilité absolument continue par rapport à la mesure de Lebesgue, invariants pour une transformation dilatante de l'intervalle. Préprint de l'universite de Bourgogne.Google Scholar
[Wo]Wong, S.. Some metric properties of piecewise monotonic mappings of the unit interval. Trans. Amer. Math. Soc. 246 (1978).CrossRefGoogle Scholar