Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Dolník, M.
Schreiber, I.
and
Marek, M.
1986.
Dynamic regimes in a periodically forced reaction cell with oscillatory chemical reaction.
Physica D: Nonlinear Phenomena,
Vol. 21,
Issue. 1,
p.
78.
Mackay, R.S.
and
Tresser, C.
1986.
Transition to topological chaos for circle maps.
Physica D: Nonlinear Phenomena,
Vol. 19,
Issue. 2,
p.
206.
Misiurewicz, Michał
1986.
Rotation intervals for a class of maps of the real line into itself.
Ergodic Theory and Dynamical Systems,
Vol. 6,
Issue. 1,
p.
117.
Hockett, Kevin
and
Holmes, Philip
1988.
Bifurcation to badly ordered orbits in one-parameter families of circle maps, or angels fallen from the devil’s staircase.
Proceedings of the American Mathematical Society,
Vol. 102,
Issue. 4,
p.
1031.
Le Calvez, P.
1988.
Propriétés des attracteurs de Birkhoff.
Ergodic Theory and Dynamical Systems,
Vol. 8,
Issue. 2,
p.
241.
Alseda, L
Llibre, J
Manosas, F
and
Misiurewicz, M
1988.
Lower bounds of the topological entropy for continuous maps of the circle of degree one.
Nonlinearity,
Vol. 1,
Issue. 3,
p.
463.
Hockett, K
1988.
Bifurcation to rotating Cantor sets in maps of the circle.
Nonlinearity,
Vol. 1,
Issue. 4,
p.
603.
Block, Louis
Coven, Ethan M.
Jonker, Leo
and
Misiurewicz, Michał
1989.
Primary cycles on the circle.
Transactions of the American Mathematical Society,
Vol. 311,
Issue. 1,
p.
323.
Alseda, L
and
Manosas, F
1990.
Kneading theory and rotation intervals for a class of circle maps of degree one.
Nonlinearity,
Vol. 3,
Issue. 2,
p.
413.
Llibre, J.
and
Mackay, R. S.
1991.
Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity.
Ergodic Theory and Dynamical Systems,
Vol. 11,
Issue. 1,
p.
115.
Alsedà, Lluís
Mañosas, Francesc
and
Szlenk, Wiesław
1993.
A characterization of the uniquely ergodic endomorphisms of the circle.
Proceedings of the American Mathematical Society,
Vol. 117,
Issue. 3,
p.
711.
Epstein, Adam
Keen, Linda
and
Tresser, Charles
1995.
The set of maps $$F_{a,b} :x \mapsto x + a + \tfrac{b}{{2\pi }}$$ sin(2πx) with any given rotation interval is contractiblewith any given rotation interval is contractible.
Communications in Mathematical Physics,
Vol. 173,
Issue. 2,
p.
313.
Campbell, David K.
Galeeva, Roza
Tresser, Charles
and
Uherka, David J.
1996.
Piecewise linear models for the quasiperiodic transition to chaos.
Chaos: An Interdisciplinary Journal of Nonlinear Science,
Vol. 6,
Issue. 2,
p.
121.
Blokh, Alexander
and
Misiurewicz, Michał
1997.
Entropy of twist interval maps.
Israel Journal of Mathematics,
Vol. 102,
Issue. 1,
p.
61.
MIYAZAWA, Megumi
2002.
Chaos and Entropy for Circle Maps.
Tokyo Journal of Mathematics,
Vol. 25,
Issue. 2,
Blokh, A.
and
Snider, K.
2013.
Over-rotation numbers for unimodal maps.
Journal of Difference Equations and Applications,
Vol. 19,
Issue. 7,
p.
1108.
Llibre, Jaume
2015.
Brief survey on the topological entropy.
Discrete & Continuous Dynamical Systems - B,
Vol. 20,
Issue. 10,
p.
3363.
Zhou, Tong
and
Qin, Wen-Xin
2021.
Pseudo solutions, rotation sets, and shadowing rotations for monotone recurrence relations.
Mathematische Zeitschrift,
Vol. 297,
Issue. 3-4,
p.
1673.
Blokh, Alexander M.
and
Sharkovsky, Oleksandr M.
2022.
Sharkovsky Ordering.
p.
51.
Zhou, Tong
Hu, Wen-Juan
Huang, Qi-Ming
and
Qin, Wen-Xin
2022.
ρ-bounded orbits and Arnold tongues for quasiperiodically forced circle maps*
.
Nonlinearity,
Vol. 35,
Issue. 3,
p.
1119.