Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T18:02:04.487Z Has data issue: false hasContentIssue false

Transitive dendrite map with zero entropy

Published online by Cambridge University Press:  08 March 2016

JAKUB BYSZEWSKI
Affiliation:
Institute of Mathematics, Faculty of Mathematics and Computer Science, Łojasiewicza 6, 30-348 Kraków, Poland email [email protected]
FRYDERYK FALNIOWSKI
Affiliation:
Department of Mathematics, Cracow University of Economics, Rakowicka 27, 31-510 Kraków, Poland email [email protected]
DOMINIK KWIETNIAK
Affiliation:
Institute of Mathematics, Faculty of Mathematics and Computer Science, Łojasiewicza 6, 30-348 Kraków, Poland email [email protected] Institute of Mathematics, Federal University of Rio de Janeiro, Cidade Universitaria – Ilha do Fundão, Rio de Janeiro 21945-909, Brazil email [email protected]

Abstract

Hoehn and Mouron [Hierarchies of chaotic maps on continua. Ergod. Th. & Dynam. Sys.34 (2014), 1897–1913] constructed a map on the universal dendrite that is topologically weakly mixing but not mixing. We modify the Hoehn–Mouron example to show that there exists a transitive (even weakly mixing) dendrite map with zero topological entropy. This answers the question of Baldwin [Entropy estimates for transitive maps on trees. Topology40(3) (2001), 551–569].

Type
Research Article
Copyright
© Cambridge University Press, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, G., Hernández-Gutiérrez, R., Naghmouchi, I. and Oprocha, P.. Periodic points and transitivity on dendrites. Ergod. Th. & Dynam. Sys. to appear. Preprint, 2013, arXiv:1312.7426v1 [math.DS].Google Scholar
Alsedà, Ll., Kolyada, S., Llibre, J. and Snoha, L’.. Entropy and periodic points for transitive maps. Trans. Amer. Math. Soc. 351(4) (1999), 15511573.CrossRefGoogle Scholar
Baldwin, S.. Entropy estimates for transitive maps on trees. Topology 40(3) (2001), 551569.Google Scholar
Blokh, A. M.. On Transitive Mappings of One-dimensional Branched Manifolds (Differential-Difference Equations and Problems of Mathematical Physics, 39) . Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1984, p. 131.Google Scholar
Carleson, L. and Gamelin, T. W.. Complex Dynamics (Universitext: Tracts in Mathematics) . Springer, New York, 1993, p. x+175.Google Scholar
Dirbák, M., Snoha, L’. and Špitalský, V.. Minimality, transitivity, mixing and topological entropy on spaces with a free interval. Ergod. Th. & Dynam. Sys. 33(6) (2013), 17861812.Google Scholar
Hoehn, L. and Mouron, C.. Hierarchies of chaotic maps on continua. Ergod. Th. & Dynam. Sys. 34 (2014), 18971913.Google Scholar
Iwanik, A.. Independent sets of transitive points. Dynamical Systems and Ergodic Theory (Warsaw, 1986) (Banach Center Publications, 23) . PWN, Warsaw, 1989, pp. 277282.Google Scholar
Kočan, Z.. Chaos on one-dimensional compact metric spaces. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22(10) (2012),1250259; 10 pp.Google Scholar
Kočan, Z., Kornecká-Kurková, V. and Málek, M.. Entropy, horseshoes and homoclinic trajectories on trees, graphs and dendrites. Ergod. Th. & Dynam. Sys. 31(1) (2011), 165175.CrossRefGoogle Scholar
Li, J. and Tu, S.. On proximality with Banach density one. J. Math. Anal. Appl. 416(1) (2014), 3651.Google Scholar
Mai, J. H.. Pointwise-recurrent graph maps. Ergod. Th. & Dynam. Sys. 25 (2005), 629637.Google Scholar
Nadler, S. B. Jr. Continuum Theory. Marcel Dekker, New York, 1992.Google Scholar
Naghmouchi, I.. Pointwise-recurrent dendrite maps. Ergod. Th. & Dynam. Sys. 33(4) (2013), 11151123.Google Scholar
Špitalský, V.. Transitive dendrite map with infinite decomposition ideal. Discrete Contin. Dyn. Syst. 35(2) (2015), 771792.CrossRefGoogle Scholar
Špitalský, V.. Topological entropy of transitive dendrite maps. Ergod. Th. & Dynam. Sys. 35(4) (2015), 12891314.Google Scholar
Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79) . Springer, New York, 1982.Google Scholar
Ważewski, T.. Sur le courbes de Jordan ne renfermant aucune courbe simple fermée de Jordan. Ann. Soc. Polonaise Math. (Rocznik Polskiego Towarzystwa Matematycznego) 2 (1923).Google Scholar