Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T03:13:26.508Z Has data issue: false hasContentIssue false

Topological Wiener–Wintner theorems for amenable operator semigroups

Published online by Cambridge University Press:  04 April 2013

MARCO SCHREIBER*
Affiliation:
Institute of Mathematics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany email [email protected]

Abstract

Inspired by topological Wiener–Wintner theorems we study the mean ergodicity of amenable semigroups of Markov operators on $C(K)$ and show the connection to the convergence of strong and weak ergodic nets. The results are then used to characterize mean ergodicity of Koopman semigroups corresponding to skew product actions on compact group extensions.

Type
Research Article
Copyright
Copyright ©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Assani, I.. Wiener Wintner Ergodic Theorems. World Scientific, River Edge, NJ, 2003.Google Scholar
Berglund, J. F., Junghenn, H. D. and Milnes, P.. Analysis on Semigroups (Canadian Mathematical Society Series of Monographs and Advanced Texts). John Wiley & Sons, New York, 1989.Google Scholar
Bombieri, E. and Taylor, J. E.. Which distributions of matter diffract? An initial investigation. J. Physique 47 (1986), C3-19C3-28. International Workshop on Aperiodic Crystals (Les Houches, 1986).Google Scholar
Bombieri, E. and Taylor, J. E.. Quasicrystals, tilings, and algebraic number theory: some preliminary connections. The Legacy of Sonya Kovalevskaya: Proceedings of a Symposium (Contemporary Mathematics, 64). Ed. Keen, L.. American Mathematical Society, Providence, RI, 1987, pp. 241264.CrossRefGoogle Scholar
Day, M. M.. Semigroups and amenability. Semigroups (Proc. Sympos., Wayne State Univ., Detroit, MI, 1968). Academic Press, New York, 1969, pp. 553.Google Scholar
Day, M. M.. Normed Linear Spaces (Ergebnisse der Mathematik und ihrer Grenzgebiete, 21), 3rd edn. Springer, New York, 1973.Google Scholar
Diestel, J. and Uhl, J. J. Jr. Vector Measures (Mathematical Surveys, 15). American Mathematical Society, Providence, RI, 1977.CrossRefGoogle Scholar
de Oliveira, C. R.. A proof of the dynamical version of the Bombieri–Taylor conjecture. J. Math. Phys. 39 (1998), 43354342.Google Scholar
Deitmar, A. and Echterhoff, S.. Principles of Harmonic Analysis (Universitext). Springer, New York, 2009.Google Scholar
Dunford, N. and Schwartz, J. T.. Linear Operators. I. General Theory (Pure and Applied Mathematics, 7). Interscience Publishers, New York, 1958.Google Scholar
Eberlein, W. F.. Abstract ergodic theorems and weak almost periodic functions. Trans. Amer. Math. Soc. 67 (1949), 217240.CrossRefGoogle Scholar
Eisner, T., Farkas, B., Haase, M. and Nagel, R.. Operator Theoretic Aspects of Ergodic Theory (Graduate Texts in Mathematics). Springer, to appear, 2013.Google Scholar
Folland, G. B.. A Course in Abstract Harmonic Analysis (Studies in Advanced Mathematics). CRC Press, Boca Raton, FL, 1995.Google Scholar
Furstenberg, H.. Recurrence in Ergodic Theory and Combinatorial Number Theory (M. B. Porter Lectures). Princeton University Press, Princeton, NJ, 1981.Google Scholar
Hof, A.. On diffraction by aperiodic structures. Comm. Math. Phys. 169 (1995), 2543.Google Scholar
Keynes, H. B. and Newton, D.. Ergodic measures for non-abelian compact group extensions. Compositio Math. 32 (1976), 5370.Google Scholar
Krengel, U.. Ergodic Theorems (de Gruyter Studies in Mathematics, 6). Walter de Gruyter & Co, Berlin, 1985.CrossRefGoogle Scholar
Lenz, D.. Aperiodic order via dynamical systems: diffraction for sets of finite local complexity. Ergodic Theory (Contemporary Mathematics, 485). American Mathematical Society, Providence, RI, 2009, pp. 91112.Google Scholar
Lenz, D.. Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks. Comm. Math. Phys. 287 (2009), 225258.Google Scholar
Paterson, A. L. T.. Amenability (Mathematical Surveys and Monographs, 29). American Mathematical Society, Providence, RI, 1988.Google Scholar
Robinson, E. A. Jr. On uniform convergence in the Wiener–Wintner theorem. J. Lond. Math. Soc. 49 (1994), 493501.Google Scholar
Rudin, W.. Real and Complex Analysis,3rd edn. McGraw-Hill, New York, 1987.Google Scholar
Santos, S. I. and Walkden, C.. Topological Wiener–Wintner ergodic theorems via non-abelian Lie group extensions. Ergod. Th. & Dynam. Sys. 27 (2007), 16331650.Google Scholar
Satō, R.. On abstract mean ergodic theorems. Tôhoku Math. J. 30 (1978), 575581.Google Scholar
Schaefer, H. H.. Banach Lattices and Positive Operators (Grundlehren der Mathematischen Wissenschaften, 215). Springer, New York, 1974.Google Scholar
Schlottmann, M.. Generalized model sets and dynamical systems. Directions in Mathematical Quasicrystals. American Mathematical Society, Providence, RI, 2000, pp. 143159.Google Scholar
Schreiber, M.. Uniform families of ergodic operator nets, Semigroup Forum, 2012, http://dx.doi.org/10.1007/s00233-012-9444-9.Google Scholar
Walters, P.. Topological Wiener–Wintner ergodic theorems and a random ${L}^{2} $ ergodic theorem. Ergod. Th. & Dynam. Sys. 16 (1996), 179206.Google Scholar
Williamson, J. H.. Harmonic analysis on semigroups. J. Lond. Math. Soc. 42 (1967), 141.CrossRefGoogle Scholar