No CrossRef data available.
Article contents
Topological orbit equivalence classes and numeration scales of logistic maps
Published online by Cambridge University Press: 01 November 2011
Abstract
We show that every uniquely ergodic minimal Cantor system is topologically orbit equivalent to the natural extension of a numeration scale associated to a logistic map.
- Type
- Research Article
- Information
- Ergodic Theory and Dynamical Systems , Volume 32 , Issue 5: Daniel J. Rudolph – in Memoriam , October 2012 , pp. 1501 - 1526
- Copyright
- Copyright © Cambridge University Press 2011
References
[BDIL00]Barat, G., Downarowicz, T., Iwanik, A. and Liardet, P.. Propriétés topologiques et combinatoires des échelles de numération. Colloq. Math. 84/85(part 2) (2000), 285–306, Dedicated to the memory of Anzelm Iwanik.CrossRefGoogle Scholar
[BDL02]Barat, G., Downarowicz, T. and Liardet, P.. Dynamiques associées à une échelle de numération. Acta Arith. 103(1) (2002), 41–78.CrossRefGoogle Scholar
[Ber71]Bernstein, L.. The Jacobi–Perron Algorithm—its Theory and Application (Lecture Notes in Mathematics, 207). Springer, Berlin, 1971.CrossRefGoogle Scholar
[Bir57]Birkhoff, G.. Extensions of Jentzsch’s theorem. Trans. Amer. Math. Soc. 85 (1957), 219–227.Google Scholar
[BKSP97]Bruin, H., Keller, G. and St. Pierre, M.. Adding machines and wild attractors. Ergod. Th. & Dynam. Sys. 17(6) (1997), 1267–1287.CrossRefGoogle Scholar
[Bru95]Bruin, H.. Combinatorics of the kneading map. Thirty Years After Sharkovskiĭ’s Theorem: New Perspectives (Murcia, 1994) (World Scientific Series on Nonlinear Science Series B. Special Theme Issues Proceedings, 8). World Sci. Publ., River Edge, NJ, 1995, pp. 77–87, Reprint of the paper reviewed in MR1361922 (96k:58070).Google Scholar
[Bru03]Bruin, H.. Minimal Cantor systems and unimodal maps. J. Difference Equ. Appl. 9(3–4) (2003), 305–318, Dedicated to Professor Alexander N. Sharkovsky on the occasion of his 65th birthday.CrossRefGoogle Scholar
[CRL10a]Cortez, M. I. and Rivera-Letelier, J.. Choquet simplices as spaces of invariant probability measures on post-critical sets. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1) (2010), 95–115.CrossRefGoogle Scholar
[CRL10b]Cortez, M. I. and Rivera-Letelier, J.. Invariant measures of minimal post-critical sets of logistic maps. Israel J. Math. 176 (2010), 157–193.CrossRefGoogle Scholar
[DDM00]Dartnell, P., Durand, F. and Maass, A.. Orbit equivalence and Kakutani equivalence with Sturmian subshifts. Studia Math. 142(1) (2000), 25–45.CrossRefGoogle Scholar
[DHS99]Durand, F., Host, B. and Skau, C.. Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergod. Th. & Dynam. Sys. 19(4) (1999), 953–993.CrossRefGoogle Scholar
[Dow91]Downarowicz, T.. The Choquet simplex of invariant measures for minimal flows. Israel J. Math. 74(2–3) (1991), 241–256.CrossRefGoogle Scholar
[Dow05]Downarowicz, T.. Survey of odometers and Toeplitz flows. Algebraic and Topological Dynamics (Contemporary Mathematics, 385). American Mathematical Society, Providence, RI, 2005,pp. 7–37.CrossRefGoogle Scholar
[Dur10]Durand, F.. Combinatorics on Bratteli Diagrams and Dynamical Systems, Combinatorics, Automata and Number Theory (Encyclopedia of Mathematics and its Applications, 135). Cambridge University Press, Cambridge, 2010.Google Scholar
[Eff81]Effros, E. G.. Dimensions and C*-algebras (CBMS Regional Conference Series in Mathematics, 46). Conference Board of the Mathematical Sciences, Washington, DC, 1981.CrossRefGoogle Scholar
[GH55]Gottschalk, W. H. and Hedlund, G. A.. Topological Dynamics (American Mathematical Society Colloquium Publications, 36). American Mathematical Society, Providence, RI, 1955.CrossRefGoogle Scholar
[GJ00]Gjerde, R. and Johansen, Ø.. Bratteli–Vershik models for Cantor minimal systems: applications to Toeplitz flows. Ergod. Th. & Dynam. Sys. 20(6) (2000), 1687–1710.CrossRefGoogle Scholar
[GLT95]Grabner, P. J., Liardet, P. and Tichy, R. F.. Odometers and systems of numeration. Acta Arith. 70(2) (1995), 103–123.CrossRefGoogle Scholar
[GMPS08]Giordano, T., Matui, H., Putnam, I. F. and Skau, C. F.. Orbit equivalence for Cantor minimal -systems. J. Amer. Math. Soc. 21(3) (2008), 863–892.CrossRefGoogle Scholar
[GMPS10]Giordano, T., Matui, H., Putnam, I. F. and Skau, C. F.. Orbit equivalence for Cantor minimal -systems. Invent. Math. 179(1) (2010), 119–158.CrossRefGoogle Scholar
[Goo86]Goodearl, K. R.. Partially Ordered Abelian Groups with Interpolation (Mathematical Surveys and Monographs, 20). American Mathematical Society, Providence, RI, 1986.Google Scholar
[GPS95]Giordano, T., Putnam, I. F. and Skau, C. F.. Topological orbit equivalence and C*-crossed products. J. Reine Angew. Math. 469 (1995), 51–111.Google Scholar
[GW95]Glasner, E. and Weiss, B.. Weak orbit equivalence of Cantor minimal systems. Internat. J. Math. 6(4) (1995), 559–579.CrossRefGoogle Scholar
[Hof80]Hofbauer, F.. The topological entropy of the transformation x↦ax(1−x). Monatsh. Math. 90(2) (1980), 117–141.CrossRefGoogle Scholar
[HPS92]Herman, R. H., Putnam, I. F. and Skau, C. F.. Ordered Bratteli diagrams, dimension groups and topological dynamics. Internat. J. Math. 3(6) (1992), 827–864.CrossRefGoogle Scholar
[Liv95]Liverani, C.. Decay of correlations. Ann. of Math. (2) 142(2) (1995), 239–301.CrossRefGoogle Scholar
[PSS86]Putnam, I., Schmidt, K. and Skau, C.. C *-algebras associated with Denjoy homeomorphisms of the circle. J. Operator Theory 16(1) (1986), 99–126.Google Scholar
[Put10]Putnam, I. F.. Orbit equivalence of Cantor minimal systems: a survey and a new proof. Expo. Math. 28(2) (2010), 101–131.CrossRefGoogle Scholar
[Rie81]Riedel, N.. Classification of dimension groups and iterating systems. Math. Scand. 48(2) (1981), 226–234.CrossRefGoogle Scholar
[Sch73]Schweiger, F.. The Metrical Theory of Jacobi–Perron Algorithm (Lecture Notes in Mathematics, 334). Springer, Berlin, 1973.CrossRefGoogle Scholar
[Shu05]Shultz, F.. Dimension groups for interval maps. New York J. Math. 11 (2005), 477–517 (electronic).Google Scholar