Article contents
Topological entropy of semi-dispersing billiards
Published online by Cambridge University Press: 01 August 1998
Abstract
In this paper we continue to explore the applications of the connections between singular Riemannian geometry and billiard systems that were first used in [6] to prove estimates on the number of collisions in non-degenerate semi-dispersing billiards.
In this paper we show that the topological entropy of a compact non-degenerate semi-dispersing billiard on any manifold of non-positive sectional curvature is finite. Also, we prove exponential estimates on the number of periodic points (for the first return map to the boundary of a simple-connected billiard table) and the number of periodic trajectories (for the billiard flow). In \S5 we prove some estimates for the topological entropy of Lorentz gas.
- Type
- Research Article
- Information
- Copyright
- © 1998 Cambridge University Press
- 8
- Cited by