Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T03:11:48.609Z Has data issue: false hasContentIssue false

Théorèmes ergodiques pour une translation sur un nilvariété

Published online by Cambridge University Press:  19 September 2008

Emmanuel Lesigne
Affiliation:
Faculté des Sciences et Techniques, 6 Av. Le Gorgeu, 29287, Brest Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let T be a translation defined on a nil-manifold N/Γ, where N is a nilpotent group of order two.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

REFERENCES

[1]Auslander, L., Green, L. & Hahn, F.. Flows on homogeneous spaces. Ann. Math. Studies 53 (1963).Google Scholar
[2]Bellow, A. & Losert, V.. The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences. Trans. A.M.S. 288 (1985), 307345.CrossRefGoogle Scholar
[3]Conze, J. P. & Lesigne, E.. Théorèmes ergodiques pour des mesures diagonales. Bull. Soc. Math. France 111 (1984), 143175.Google Scholar
[4]Furstenberg, H.. Stationary processes and prediction theory. Ann. Math. Studies 44 (1960).Google Scholar
[5]Furstenberg, H.. Strict ergodicity and transformations of the torus. Amer. J. Math. 83 (1961), 573601.CrossRefGoogle Scholar
[6]Furstenberg, H.. The structure of distal flows. Amer. J. Math. 85 (1963), 477515.CrossRefGoogle Scholar
[7]Furstenberg, H.. Disjointness in ergodic theory… Math. Systems Theory 1 (1967), 149.CrossRefGoogle Scholar
[8]Lesigne, E.. Sur la convergence ponctuelle de certaines moyennes ergodiques. Note au C.R.A.S. 298, série I, (17) (1984), 425428.Google Scholar
[9]Malce'v, A. I.. On a class of homogeneous spaces. A M.S. Trans. 39 (1951).Google Scholar
[10]Oxtoby, J. C.. Ergodic sets. Bull. A.M.S. 58 (1952), 116136.CrossRefGoogle Scholar
[11]Parry, W.. Dynamical systems on nilmanifolds. Bull. London Math. Soc. 2 (1970), 3840.CrossRefGoogle Scholar
[12]Parry, W.. Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math. 91 (1969), 757771.CrossRefGoogle Scholar
[13]Raghunathan, M. S.. Discrete Subgroups of Lie Groups. (Springer Verlag, Berlin, 1972).CrossRefGoogle Scholar
[14]Wiener, N. & Wintner, A.. Harmonic analysis and ergodic theory. Amer. J. Math. 63 (1941), 415426.CrossRefGoogle Scholar