Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T09:59:25.279Z Has data issue: false hasContentIssue false

Systèmes dynamiques gaussiens d'entropie nulle, lâchement et non lâchement Bernoulli

Published online by Cambridge University Press:  19 September 2008

Thierry De La Rue
Affiliation:
Analyse et Modèles Stochastiques, URA-CNRS 1378, Université de Rouen 76130 Mont-Saint-Aignan, France

Abstract

We construct two real Gaussian dynamical systems of zero entropy; the first one is not loosely Bernoulli, and the second is a loosely Bernoulli Gaussian-Kronecker system. To get loose-Bernoullicity for the second system, we prove and use a property of planar Brownian motion on [0, 1]: we can recover the whole trajectory knowing only some angles formed by the motion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cornfeld, I. P., Fomin, S. V. et Sinai, Ya. G.. Ergodic Theory. Springer, Berlin, 1982.CrossRefGoogle Scholar
[2]Junco, A. Del. Transformations with discrete spectrum are stacking transformations. Canad. J. Math. 28 (1976), 836839.CrossRefGoogle Scholar
[3]Feldman, J.. New K-automorphisms and a problem of Kakutani. Isr. J. Math. 24 (1976), 1638.CrossRefGoogle Scholar
[4]Ferenczi, S.. Systèmes de rang fini. Thèse de doctorat d'État, Université d'Aix-Marseille 2, 1990.Google Scholar
[5]Iwanik, A. et De Sam Lazaro, J.. Sur la multiplicité Lp d'un automorphisme gaussien. C. R. Acad. Sci. Paris, Série I 312 (1991), 875876.Google Scholar
[6]King, J.. The commutant is the weak closure of the powers, for rank-1 transformations. Ergod. Th. & Dynam. Sys. 6 (1986), 363384.CrossRefGoogle Scholar
[7]Ornstein, D. S., Rudolph, D. J. et Weiss, B.. Equivalence of Measure Preserving Transformations. Memoirs of the American Mathematical Society 262. Amer. Math. Soc., 1982.Google Scholar
[8]Rothstein, A.. Vershik processes: First steps. Isr. J. Math. 36 (1980), 205224.Google Scholar
[9]de la Rue, T.. Entropie d'un système dynamique gaussien: Cas d'une action de . C. R. Acad. Sci. Paris, Série I 317 (1993), 191194.Google Scholar
[10]de la Rue, T.. Mouvement moyen et système dynamique gaussien. Probab. Theory Relat. Fields 102 (1995), 4556.CrossRefGoogle Scholar
[11]Thouvenot, J. P.. The metrical structure of some Gaussian processes. In Ergodic Theory and Related Topics II, pp 195198, Georgenthal, 1986. Teubner Texte zur Mathematik.Google Scholar