Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T10:40:49.519Z Has data issue: false hasContentIssue false

Symmetric Birkhoff sums in infinite ergodic theory

Published online by Cambridge University Press:  04 July 2016

JON AARONSON
Affiliation:
School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel email [email protected]
ZEMER KOSLOFF
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK email [email protected]
BENJAMIN WEISS
Affiliation:
Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem 91904, Israel email [email protected]

Abstract

We show that the absolutely normalized, symmetric Birkhoff sums of positive integrable functions in infinite, ergodic systems never converge pointwise even though they may be almost surely bounded away from zero and infinity. Also, we consider the latter phenomenon and characterize it among transformations admitting generalized recurrent events.

Type
Research Article
Copyright
© Cambridge University Press, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, J.. Rational ergodicity, bounded rational ergodicity and some continuous measures on the circle. Israel J. Math. 33(3–4) (1979), 181197 1980. A collection of invited papers on ergodic theory.CrossRefGoogle Scholar
Aaronson, J.. An Introduction to Infinite Ergodic Theory (Mathematical Surveys and Monographs, 50) . American Mathematical Society, Providence, RI, 1997.CrossRefGoogle Scholar
Aaronson, J. and Denker, M.. Lower bounds for partial sums of certain positive stationary processes. Almost Everywhere Convergence (Columbus, OH, 1988). Academic Press, Boston, MA, 1989, pp. 19.Google Scholar
Aaronson, J. and Denker, M.. Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps. Stoch. Dyn. 1(2) (2001), 193237.CrossRefGoogle Scholar
Aaronson, J. and Nakada, H.. Trimmed sums for non-negative, mixing stationary processes. Stochastic Process. Appl. 104(2) (2003), 173192.CrossRefGoogle Scholar
Aaronson, J. and Zweimueller, R.. Limit theory for some positive, stationary processes with infinite mean. Ann. Inst. Henri Poincar Probab. Stat. 50(1) (2014), 256284.CrossRefGoogle Scholar
Bingham, N. H., Goldie, C. M. and Teugels, J. L.. Regular Variation (Encyclopedia of Mathematics and its Applications, 27) . Cambridge University Press, Cambridge, 1987.CrossRefGoogle Scholar
Chacon, R. V.. A geometric construction of measure preserving transformations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, CA, 1965/66), Vol. II: Contributions to Probability Theory, Part 2. University of California Press, Berkeley, CA, 1967, pp. 335360.Google Scholar
Dai, I., Garcia, X., Puadurariu, T. and Silva, C. E.. On rationally ergodic and rationally weakly mixing rank-one transformations. Ergod. Th. Dynam. Sys. 35(4) (2015), 11411164.CrossRefGoogle Scholar
de Haan, L. and Stadtmüller, U.. Dominated variation and related concepts and Tauberian theorems for Laplace transforms. J. Math. Anal. Appl. 108(2) (1985), 344365.CrossRefGoogle Scholar
Diamond, H. G. and Vaaler, J. D.. Estimates for partial sums of continued fraction partial quotients. Pacific J. Math. 122(1) (1986), 7382.CrossRefGoogle Scholar
Dowker, Y. N. and Erdős, P.. Some examples in ergodic theory. Proc. Lond. Math. Soc. (3) 9 (1959), 227241.CrossRefGoogle Scholar
Friedman, N. A.. Introduction to Ergodic Theory (Van Nostrand Reinhold Mathematical Studies, 29) . Van Nostrand Reinhold Co., New York, 1970.Google Scholar
Friedman, N. A.. Replication and stacking in ergodic theory. Amer. Math. Monthly 99(1) (1992), 3141.CrossRefGoogle Scholar
Gorodnik, A. and Nevo, A.. Ergodic theory and the duality principle on homogeneous spaces. Geom. Funct. Anal. 24(1) (2014), 159244.CrossRefGoogle Scholar
Hochman, M.. A ratio ergodic theorem for multiparameter non-singular actions. J. Eur. Math. Soc. (JEMS) 12(2) (2010), 365383.CrossRefGoogle Scholar
Hopf, E.. Ergodentheorie, Ergebnisse der Mathematik und ihrer Grenzgebiete, 5. Bd. Julius Springer, 1937.Google Scholar
Maucourant, F. and Schapira, B.. Distribution of orbits in $r^{2}$ of a finitely generated group of $sl(2,r)$ . Technical Report arXiv:1204.5158, 2012.Google Scholar
Mori, T.. The strong law of large numbers when extreme terms are excluded from sums. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 36(3) (1976), 189194.CrossRefGoogle Scholar
Mori, T.. Stability for sums of i.i.d. random variables when extreme terms are excluded. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 40(2) (1977), 159167.CrossRefGoogle Scholar
Nadkarni, M. G.. Basic Ergodic Theory (Third, Texts and Readings in Mathematics, 6) . Hindustan Book Agency, New Delhi, 2013.CrossRefGoogle Scholar