Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T03:26:54.110Z Has data issue: false hasContentIssue false

Sur une notion d'autonomie de systèmes dynamiques, appliquée aux ensembles invariants des flots d' Anosov algébriques

Published online by Cambridge University Press:  19 September 2008

A. Zeghib
Affiliation:
CNRS: UMR 128, Ecole Normale Supérieure de Lyon, 46, Allée d' Italie, 69364 LYON Cedex 07, France

Abstract

We introduce a notion of autonomous dynamical systems which generalizes algebraic dynamical systems. We show by giving examples and by describing some properties that this generalization is not a trivial one. We apply the methods then developed to algebraic Anosov systems. We prove that a C1-submanifold of finite volume, which is invariant by an algebraic Anosov system is ‘essentially’ algebraic.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Ano]Anosov, D. V.. Geodesic flows on compact manifolds of negative curvature. Proc. Steklov Inst. Math., AMS Trans. (1969).Google Scholar
[Bes]Besse, A.. Manifolds all of Whose Geodesies are Closed. Springer: Berlin, 1978.CrossRefGoogle Scholar
[Ebe]Eberlein, P.. When is a geodesic flow of Anosov type?. J. Diff. Geom. 8 (1973), 437463.Google Scholar
[Fat]Fathi, A.. Some compact invariant sets for hyperbolic linear automorphisms of torn. Ergod. Th. & Dynam. Sys. 8 (1988), 205213.CrossRefGoogle Scholar
[Fed]Federer, H.. Geometric Measure Theory. Springer: Berlin, 1969.Google Scholar
[Fra]Franks, J.. Invariant sets of hyperbolic toral automorphisms. Amer. J. Math. 99 (1977), 10891095.CrossRefGoogle Scholar
[Ghy1]Ghys, E.. Flots d' Anosov dont les feuilletages stables sont différentiables. Ann. Sci. Ec Norm. Sup. 20 (1987), 251270.CrossRefGoogle Scholar
[Ghy2]Ghys, E.. Dynamique des flots unipotents sur les espaces homogenes. Sém. Bourbaki. (11 1991), Exposé 747.Google Scholar
[Han]Hancock, S.. Construction of invariant sets for Anosov diffeomorphisms. J. London. Math. Soc. 18 (1978), 339348.Google Scholar
[Hel]Helgason, S.. Differential Geometry, Lie Groups and Symmetric Spaces. Academic: New York, 1978.Google Scholar
[Hir]Hirsch, M.. On invariant subsets of hyperbolic sets. Essays in Topology and Related Topics. (1970), 126–146.CrossRefGoogle Scholar
[Hir, Pug]Hirsch, M. and Pugh, C.. Stable manifolds and hyperbolic sets. Proc. Symp. Pure Math. 14 (1970), 125146.CrossRefGoogle Scholar
[Man1]Mañé, R.. Orbits of paths under toral automorphisms. Proc. Amer. Soc. 73 (1979), 121125.CrossRefGoogle Scholar
[Man2]Mañé, R.. Invariant sets of Anosov diffeomorphisms. Invent. Math. 46 (1978), 147152.CrossRefGoogle Scholar
[Man3]Mañé, R.. Quasi Anosov diffeomorphisms and hyperbolic manifolds. Trans. Amer. Math. Soc. 229 (1977), 351370.CrossRefGoogle Scholar
[Mar]Margulis, G.. Discrete Subgroups of Semisimple Lie Groups. Springer: Berlin, 1991.CrossRefGoogle Scholar
[Mol]Molino, P.. Riemannian Foliations. Birkhauser: Boston, 1988.CrossRefGoogle Scholar
[Pla]Plante, J.. Anosov flows. Amer. J. Math. 94 (1972), 729754.CrossRefGoogle Scholar
[Sel]Selgrade, I.. Isolated invariant sets for flows on vector bundles. Trans. Amer. Math. Soc. 203 (1975), 359.CrossRefGoogle Scholar
[Thu]Thurston, W.. Geometry and Topology of 3-manifolds. Princeton University (1978).Google Scholar
[Tom]Tomter, P.. Anosov flows on infra-homogeneous spaces. Proc. Symp. in Pure. Math. 14 (1970), 299327.CrossRefGoogle Scholar
[Wal]Walters, P.. An Introduction to Ergodic Theory. Springer: Berlin, 1982.CrossRefGoogle Scholar
[Wol]Wolf, J.. Spaces of Constant Curvature. McGraw-Hill: New York, 1967.Google Scholar
[Zeg1]Zeghib, A.. Subsystems of Anosov systems.Google Scholar
[Zeg2]Zeghib, A.. Ensembles invariants des flots géodésiques des variétés localement symétriques. A paraître dans Ergod. Th. & Dynam. Sys.Google Scholar
[Zim]Zimmer, R.. Ergodic Theory and Semisimple Groups. Birkhauser: Boston, 1984.CrossRefGoogle Scholar