Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T03:53:27.663Z Has data issue: false hasContentIssue false

Sur une nil-variété, les parties minimales associées à une translation sont uniquement ergodiques

Published online by Cambridge University Press:  19 September 2008

Emmanuel Lesigne
Affiliation:
Université de Bretagne Occidental, Département de Mathématiques et Informatique, 6 Avenue he Gorgeu 29287 BREST cedex, France.

Abstract

We call nilmanifold every compact space X on which a connected locally compact nilpotent group acts transitively. We show that, if X is a nilmanifold and f is a continuous function on X, then, for all x in X and a in N, the sequence

converges. We give a process for the computation of the limit. A similar result for the continuous means is presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Auslander, L., Green, L. et Hahn, F.. Flows on homogeneous spaces. Ann. Math. Studies 53 (1963).Google Scholar
[2]Conze, J.P. et Lesigne, E.. Sur un théorème ergodique pour des mesures diagonales. Publications du séminaire de Probabilités de l'Université de Rennes (1987)Google Scholar
et C.R. Acad. Sci. Paris 306, Série I (1988), 491493.Google Scholar
[3]Furstenberg, H.. Strict ergodicity and transformations of the torus. Amer. J. Math. 83 (1961), 573601.CrossRefGoogle Scholar
[4]Furstenberg, H.. The structure of distal flows. Amer. J. Math. 85 (1963), 477515.CrossRefGoogle Scholar
[5]Lesigne, E.. Théorémes ergodiques pour une translation sur une nil-variété. Ergod. Th. & Dynam. Sys. 9 (1) (1989), 115126.CrossRefGoogle Scholar
[6]Lesigne, E.. Un théorème de disjonction de systèmes dynamiques et une généralisation du théorème ergodique de Wiener—Wintner. Ergod. Th. & Dynam. Sys. 10 (1990), 513521.CrossRefGoogle Scholar
[7]Mal'eev, A.I.. On a class of homogeneous spaces. Amer. Math. Soc. Transl. 39 (1951).Google Scholar
[8]Margulis, G.A.. Formes quadratiques indéfinies et flots unipotents sur les espaces homogènes. C.R. Acad. Sci. Paris 304, Série I (1987), 249253.Google Scholar
[9]Oxtoby, J.C.. Ergodic sets. Bull. Amer. Math. Soc. 58 (1952), 116136.CrossRefGoogle Scholar
[10]Parry, W.. Compact abelian group extensions of discrete dynamical systems. Z. Wahrsch. verw. Geb. 13 (1969), 95113.CrossRefGoogle Scholar
[11]Parry, W.. Ergodic properties of afnne transformations and flows on nilmanifolds. Amer. J. Math. 91 (1969), 757771.CrossRefGoogle Scholar
[12]Parry, W.. Dynamical systems on nilmanifolds. Bull. London Math. Soc. 2 (1970), 3840.CrossRefGoogle Scholar