Published online by Cambridge University Press: 28 January 2016
We characterize supramenable groups in terms of the existence of invariant probability measures for partial actions on compact Hausdorff spaces and the existence of tracial states on partial crossed products. These characterizations show that, in general, one cannot decompose a partial crossed product of a $\text{C}^{\ast }$-algebra by a semidirect product of groups into two iterated partial crossed products. However, we give conditions which ensure that such decomposition is possible.