Article contents
Subadditive mean ergodic theorems
Published online by Cambridge University Press: 19 September 2008
Abstract
The authors investigate which results of the classical mean ergodic theory for bounded linear operators in Banach spaces have analogues for subadditive sequences (Fn) in a Banach lattice B. A sequence (Fn) is subadditive for a positive contraction T in B if Fn+k ≤ Fn + TnFk (n, k ≥ 1). For example, von Neumann's mean ergodic theorem fails to extend to the general subadditive case, but it extends to the non-negative subadditive case. It is shown that the existence of a weak cluster point f = Tf for (n−1Fn) implies In Lp (1 ≤ p < ∞) the existence of a weak cluster point for non-negative (n−1Fn) is equivalent with norm convergence. If T is an isometry in Lp (1 < p < ∞) and sup then n−1Fn converges weakly. If T in L1 has a strictly positive fixed point and sup then n−1Fn converges strongly. Most results are proved even in the d-parameter case.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1981
References
REFERENCES
- 13
- Cited by