Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T04:33:20.781Z Has data issue: false hasContentIssue false

Semi-focusing billiards: ergodicity

Published online by Cambridge University Press:  01 October 2008

LEONID A. BUNIMOVICH
Affiliation:
ABC Math Program and School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA (email: [email protected])
GIANLUIGI DEL MAGNO
Affiliation:
Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany (email: [email protected])

Abstract

In Bunimovich and Del Magno [Semi-focusing billiards: hyperbolicity. Comm. Math. Phys.262 (2006), 17–32], we proved that billiards in certain three-dimensional convex domains are hyperbolic. In this paper, we continue the study of these systems, and prove that they enjoy the Bernoulli property. This result answers affirmatively a long-standing question on the existence of ergodic billiards in convex domains in dimensions greater than two. Besides, it shows that the chaotic components of the first rigorously investigated three-dimensional billiards with mixed phase space (mushroom billiards), introduced in Bunimovich and Del Magno, are in fact Bernoulli.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bunimovich, L.. The ergodic properties of certain billiards. Funkt. Anal. Prilozh. 8 (1974), 7374.Google Scholar
[2]Bunimovich, L.. On the ergodic properties of nowhere dispersing billiards. Comm. Math. Phys. 65 (1979), 295312.CrossRefGoogle Scholar
[3]Bunimovich, L.. Many-dimensional nowhere dispersing billiards with chaotic behavior. Phys. D 33 (1988), 5864.CrossRefGoogle Scholar
[4]Bunimovich, L.. On absolutely focusing mirrors. Ergodic Theory and Related Topics, III (Güstrow, 1990) (Lecture Notes in Mathematics, 1514). Springer, Berlin, 1992, pp. 6282.CrossRefGoogle Scholar
[5]Bunimovich, L.. Mushrooms and other billiards with divided phase space. Chaos 11(4) (2001), 17.CrossRefGoogle ScholarPubMed
[6]Bálint, P., Chernov, N., Szász, D. and Tóth, I. P.. Multi-dimensional semi-dispersing billiards: singularities and the fundamental theorem. Ann. Henri Poincaré 3(3) (2002), 451482.CrossRefGoogle Scholar
[7]Bálint, P., Chernov, N., Szász, D. and Tóth, I. P.. Geometry of multi-dimensional dispersing billiards. Astérisque 286 (2003), 119150.Google Scholar
[8]Bunimovich, L. and Del Magno, G.. Semi-focusing billiards: hyperbolicity. Comm. Math. Phys. 262 (2006), 1732.CrossRefGoogle Scholar
[9]Bunimovich, L. and Rehacek, J.. Nowhere dispersing 3D billiards with non-vanishing Lyapunov exponents. Comm. Math. Phys. 189 (1997), 729757.CrossRefGoogle Scholar
[10]Bunimovich, L. and Rehacek, J.. On the ergodicity of many-dimensional focusing billiards. Ann. Inst. H. Poincaré Phys. Théor. 68(4) (1998), 421448.Google Scholar
[11]Bunimovich, L. and Rehacek, J.. How high-dimensional stadia look like. Comm. Math. Phys. 197(2) (1998), 277301.CrossRefGoogle Scholar
[12]Bálint, P. and Tóth, I. P.. Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards. Discr. Cont. Dynam. Systems 15 (2006), 3759.CrossRefGoogle Scholar
[13]Chernov, N.. Local ergodicity of hyperbolic systems with singularities. Funktsional. Anal. Prilozh. 27(1) (1993), 6064 (in Russian) (Engl. Transl. Funct. Anal. Appl. 27(1) (1993), 51–54).Google Scholar
[14]Chernov, N. and Haskell, C.. Nonuniformly hyperbolic K-systems are Bernoulli. Ergod. Th. & Dynam. Sys. 16 (1996), 1944.CrossRefGoogle Scholar
[15]Chernov, N. and Markarian, R.. Chaotic Billiards (Mathematical Surveys and Monographs, 127). American Mathematical Society, Providence, RI, 2006.CrossRefGoogle Scholar
[16]Cornfeld, I., Fomin, S. and Sinai, Ya.. Ergodic Theory. Springer, New York, 1982.CrossRefGoogle Scholar
[17]Donnay, V.. Using integrability to produce chaos: billiards with positive entropy. Comm. Math. Phys. 141 (1991), 225257.CrossRefGoogle Scholar
[18]Katok, A.. Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems. Ergod. Th. & Dynam. Sys. 14(4) (1994), 757785 (with the collaboration of Keith Burns).CrossRefGoogle Scholar
[19]Katok, A. and Strelcyn, J.-M.. Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities (Lecture Notes in Mathematics, 1222). Springer, New York, 1986.CrossRefGoogle Scholar
[20]Krámli, A., Simányi, N. and Szász, D.. A ‘transversal’ fundamental theorem for semi-dispersing billiards. Comm. Math. Phys. 129(3) (1990), 535560 (See also the Erratum in Comm. Math. Phys. 138(1) (1991), 207–208).CrossRefGoogle Scholar
[21]Liverani, C. and Wojtkowski, M.. Ergodicity in Hamiltonian Systems (Dynamics Reported, 4). Springer, Berlin, 1995, pp. 130202.Google Scholar
[22]Markarian, R.. Billiards with Pesin region of measure one. Comm. Math. Phys. 118 (1988), 8797.CrossRefGoogle Scholar
[23]Markarian, R.. Non-uniformly hyperbolic billiards. Ann. Fac. Sci. Toulouse Math. 3 (1994), 223257.CrossRefGoogle Scholar
[24]Markarian, R.. The fundamental theorem of Sinai-Chernov for dynamical systems with singularities. Dynamical Systems (Santiago de Chile, 1990). Longman, Harlow, 1993, pp. 131158.Google Scholar
[25]Ornstein, D. S. and Weiss, B.. On the Bernoulli nature of systems with hyperbolic structure. Ergod. Th. & Dynam. Sys. 18 (1998), 441456.CrossRefGoogle Scholar
[26]Papenbrock, T.. Lyapunov exponents and Kolmogorov–Sinai entropy for a high-dimensional convex billiard. Phys. Rev. E 61 (2000), 13371341.Google ScholarPubMed
[27]Papenbrock, T.. Numerical study of a three-dimensional generalized stadium billiard. Phys. Rev. E 61 (2000), 46264628.Google ScholarPubMed
[28]Sinai, Ya.. Dynamical systems with elastic reflections. Russian Math. Surveys 25 (1970), 137189.CrossRefGoogle Scholar
[29]Szàsz, D.. On the K-property of some planar hyperbolic billiards. Comm. Math. Phys. 145 (1992), 595604.CrossRefGoogle Scholar
[30]Wojtkowski, M.. Invariant families of cones and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 5 (1985), 145161.CrossRefGoogle Scholar
[31]Wojtkowski, M.. Principles for the design of billiards with nonvanishing Lyapunov exponents. Comm. Math. Phys. 105 (1986), 391414.CrossRefGoogle Scholar
[32]Wojtkowski, M.. Linearly stable orbits in three-dimensional billiards. Comm. Math. Phys. 129(2) (1990), 319327.CrossRefGoogle Scholar
[33]Wojtkowski, M.. Design of hyperbolic billiards. Comm. Math. Phys. 273(2) (2007), 293304.CrossRefGoogle Scholar