Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T00:29:55.659Z Has data issue: false hasContentIssue false

Rotation intervals of endomorphisms of the circle

Published online by Cambridge University Press:  19 September 2008

R. Bamon
Affiliation:
Departamento de Matemáica, Universidad de Chile, Casilla 653—Santiago, Chile;
I. P. Malta
Affiliation:
Departamento de Matemdáca, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Casa B, CEP 22.453—Gávea—Rio de Janeiro RJ—; Brazil;
M. J. Pacifico
Affiliation:
Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, CEP 21.910—Rio de Janeiro RJ—Brazil;
F. Takens
Affiliation:
Mathematisch Instituut, Postbus 800, 9700 AV Groningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The rotation number of a diffeomorphism f: S1S1 with lift is defined as . We investigate the case where f is an endomorphism. Then this limit may not exist and may depend on x. We investigate the set of limit points of , as a function of x.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

REFERENCES

[1]Ito, R.. Rotation sets are closed. Math. Proc. Camb. Phil. Soc. 89 (1981), 107111.CrossRefGoogle Scholar
[2]Newhouse, S., Palis, J. & Takens, F.. Bifurcations and stability of families of diffeomorphisms. IHES Publ. Math. 57 (1983), 571.CrossRefGoogle Scholar