Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T09:45:46.794Z Has data issue: false hasContentIssue false

Robustly expansive codimension-one homoclinic classes are hyperbolic

Published online by Cambridge University Press:  01 February 2009

M. J. PACIFICO
Affiliation:
Instituto de Matemática, Universidade Federal do Rio de Janeiro, C. P. 68.530, CEP 21.945-970, Rio de Janeiro, R. J., Brazil (email: [email protected], [email protected])
E. R. PUJALS
Affiliation:
Instituto de Matemática Pura e Aplicada, IMPA, CEP 22460-320, Rio de Janeiro, R. J., Brazil (email: [email protected], [email protected])
M. SAMBARINO
Affiliation:
Instituto de Matemática, Facultad de Ciencias, Universidad de la República, CC30, CP 11300, Montevideo, Uruguay (email: [email protected])
J. L. VIEITEZ
Affiliation:
Instituto de Matemática, Facultad de Ingeniería, Universidad de la República, CC30, CP 11300, Montevideo, Uruguay (email: [email protected])

Abstract

We shall prove that C1-robustly expansive codimension-one homoclinic classes are hyperbolic.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alves, J.. Statistical Analysis of Non-Uniformly Expanding Dynamical Systems (Colóquio Brasileiro de Matemática, 24). IMPA Mathematical Publications (IMPA), Rio de Janeiro, 2003.Google Scholar
[2]Franks, J.. Necessary conditions for stability of diffeomorphisms. Trans. Amer. Math. Soc. 158 (1971), 301308.CrossRefGoogle Scholar
[3]Liao, S. T.. On the stability conjecture. Chinese Ann. Math. 1 (1980), 930.Google Scholar
[4]Mañé, R.. Contributions to the stability conjecture. Topology 17 (1978), 381396.CrossRefGoogle Scholar
[5]Mañé, R.. A proof of the C 1 stability conjecture. Publ. Math. Inst. Hautes Études Sci. 66 (1988), 161210.CrossRefGoogle Scholar
[6]Mañé, R.. An ergodic closing lemma. Ann. of Math. 116 (1982), 503540.CrossRefGoogle Scholar
[7]Palis, J. and de Melo, W.. Geometric Theory of Dynamical Systems. Springer, Berlin, 1982.CrossRefGoogle Scholar
[8]Pliss, V. A.. Analysis of the necessity of the conditions of Smale and Robbin for structural stability of periodic systems of differential equations. Differ. Uravn. 8 (1972), 972983.Google Scholar
[9]Pliss, V. A.. On a conjecture due to Smale. Differ. Uravn. 8 (1972), 268282.Google Scholar
[10]Pujals, E. and Sambarino, M.. Homoclinic tangencies and hyperbolicity for surface diffeomorphisms. Ann. of Math. 151 (2000), 9611023.CrossRefGoogle Scholar
[11]Pacìfico, M. J., Pujals, E. R. and Vieitez, J. L.. Robust expansive homoclinic classes. Ergod. Th. & Dynam. Sys. 25 (2005), 271300.CrossRefGoogle Scholar
[12]Sambarino, M.. Sistemas Dinámicos. Notas de la EMALCA de Costa Rica. Publicaciones de la Universidad de la República, Montevideo, Uruguay, 2005 (in Spanish).Google Scholar
[13]Sambarino, M. and Vieitez, J.. On C 1-persistently expansive homoclinic classes. Discrete Contin. Dyn. Syst. 14(3) (2006), 465481.CrossRefGoogle Scholar