Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T01:06:46.289Z Has data issue: false hasContentIssue false

Rigidity of symplectic Anosov diffeomorphisms on low dimensional tori

Published online by Cambridge University Press:  19 September 2008

L. Flaminio
Affiliation:
Department of Mathematics, 201 Walker Hall, University of Florida, Gainesville, Florida 32611, USA
A. Katok
Affiliation:
Mathematics 253–37, California Institute of Technology, Pasadena, California 91125, USA

Abstract

We show that any symplectic Anosov diffeomorphism of a four torus T4 with sufficiently smooth stable and unstable foliations is smoothly conjugate to a linear hyperbolic automorphism of T4.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Di]Dixmier, J.. L'application exponentielle dans le groupes de Lie résolubles. Bull. Soc. Math. France 85 (1957), 113121.Google Scholar
[Fe]Feres, R.. Geodesic flows on Manifolds of negative curvature with smooth horospheric foliations. PhD Thesis, California Inst. Tech. (1989).Google Scholar
[FeKa1]Feres, R. & Katok, A.. Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows. Ergod. Th. & Dynam. Sys. 9 (1989), 427432.CrossRefGoogle Scholar
[FeKa2]Feres, R. & Katok, A.. Anosov flows with smooth foliations and rigidity of the geodesic flows in three-dimensional manifolds of negative curvature. Ergod. Th. & Dynam. Sys. 10 (1990), 657670.CrossRefGoogle Scholar
[Fr]Franks, J.. Anosov Diffeomorphisms. In: Proc. Symp. Pure Math. American Mathematical Society Global Analysis. Vol. 14, American Mathematical Society, Providence (1968), pp. 6194.Google Scholar
[Gh]Ghys, É.. Flots d'Anosov dont les feuillettages stable sont différentiables. Ann. Sci. Éc. Norm. Sup. 20 (1987), 251270.CrossRefGoogle Scholar
[HuKa]Hurder, S. & Katok, A.. Differentiability, Rigidity and Godbillon-Vey classes for Anosov flows. Publ. Math. I.H.E.S. to appear.Google Scholar
[K]Kanai, M.. Geodesic Flows of negatively curved Manifolds with smooth stable and unstable Foliations. Ergod. Th. & Dynam. Sys. 8 (1988), 215239.CrossRefGoogle Scholar
[KoNo]Kobayashi, S. & Nomizu, K.. Foundations of Differential Geometry. Interscience Publishers, New York, London, Sydney (1969).Google Scholar
[Ma]Manning, A.. There are no new Anosov Diffeomorphisms on Tori. Amer. J. Math. 96 (1974), 422429.CrossRefGoogle Scholar
[No]Nomizu, K.. Invariant affine connections on homogeneous spaces. Amer. J. of Math. 76 (1954), 3365.CrossRefGoogle Scholar