Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T00:41:14.539Z Has data issue: false hasContentIssue false

Quasiregular dynamics on the n-sphere

Published online by Cambridge University Press:  18 January 2010

ALASTAIR N. FLETCHER
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK (email: [email protected])
DANIEL A. NICKS
Affiliation:
School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK (email: [email protected])

Abstract

In this paper, we investigate the boundary of the escaping set I(f) for quasiregular mappings on ℝn, both in the uniformly quasiregular case and in the polynomial type case. The aim is to show that ∂I(f) is the Julia set J(f) when the latter is defined, and shares properties with the Julia set when J(f) is not defined.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Beardon, A. F.. Iteration of Rational Functions (Graduate Texts in Mathematics, 132). Springer, New York, 1991.CrossRefGoogle Scholar
[2]Bergweiler, W.. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151188.CrossRefGoogle Scholar
[3]Bergweiler, W.. Fixed points of composite entire and quasiregular maps. Ann. Acad. Sci. Fenn. 31 (2006), 523540.Google Scholar
[4]Bergweiler, W.. Karpińska’s paradox in dimension three. Preprint, arXiv, http://arxiv.org/abs/0902.2686.Google Scholar
[5]Bergweiler, W., Fletcher, A., Langley, J. and Meyer, J.. The escaping set of a quasiregular mapping. Proc. Amer. Math. Soc. 137(2) (2009), 641651.CrossRefGoogle Scholar
[6]Dominguez, P.. Dynamics of transcendental meromorphic functions. Ann. Acad. Sci. Fenn. 23 (1998), 225250.Google Scholar
[7]Eremenko, A.. On the iteration of entire functions. Dynamical Systems and Ergodic Theory (Warsaw 1986) (Banach Center Publications, 23). PWN, Warsaw, 1989, pp. 339345.Google Scholar
[8]Heinonen, J. and Koskela, P.. Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type. Math. Scand. 77(2) (1995), 251271.CrossRefGoogle Scholar
[9]Hinkkanen, A.. Uniformly quasiregular semigroups in two dimensions. Ann. Acad. Sci. Fenn. 21(1) (1996), 205222.Google Scholar
[10]Hinkkanen, A., Martin, G. and Mayer, V.. Local dynamics of uniformly quasiregular mappings. Math. Scand. 95(1) (2004), 80100.CrossRefGoogle Scholar
[11]Iwaniec, T. and Martin, G.. Quasiregular semigroups. Ann. Acad. Sci. Fenn. 21(2) (1996), 241254.Google Scholar
[12]Martio, O.. A capacity inequality for quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I 474 (1970), 118.Google Scholar
[13]Mayer, V.. Uniformly quasiregular mappings of Lattès type. Conform. Geom. Dyn. 1 (1997), 104111.CrossRefGoogle Scholar
[14]Mayer, V.. Behavior of quasiregular semigroups near attracting fixed points. Ann. Acad. Sci. Fenn. 25(1) (2000), 3139.Google Scholar
[15]Milnor, J.. Dynamics in One Complex Variable, 3rd edn.(Annals of Mathematics Studies, 160). Princeton University Press, Princeton, NJ, 2006.Google Scholar
[16]Miniowitz, R.. Normal families of quasimeromorphic mappings. Proc. Amer. Math. Soc. 84(1) (1982), 3543.CrossRefGoogle Scholar
[17]Reshetnyak, Yu. G.. Space mappings with bounded distortion. Sibirsk. Mat. Zh. 8 (1967), 629659.Google Scholar
[18]Rickman, S.. Quasiregular Mappings (Ergebnisse der Mathematik und ihrer Grenzgebiete, 26). Springer, Berlin, 1993.CrossRefGoogle Scholar
[19]Siebert, H.. Fixpunkte und normale Familien quasiregulärer Abbildungen, Dissertation, CAU Kiel, 2004. (http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00001260).Google Scholar
[20]Siebert, H.. Fixed points and normal families of quasiregular mappings. J. Anal. Math. 98 (2006), 145168.CrossRefGoogle Scholar
[21]Sun, D. and Yang, L.. Iteration of quasi-rational mapping. Progr. Natur. Sci. (English Ed.) 11(1) (2001), 1625.Google Scholar