Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T14:01:37.676Z Has data issue: false hasContentIssue false

Purely infinite C*-algebras arising from crossed products

Published online by Cambridge University Press:  05 April 2011

MIKAEL RØRDAM
Affiliation:
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark (email: [email protected])
ADAM SIERAKOWSKI
Affiliation:
The Fields Institute for Research in Mathematical Sciences, 222 College Street, Second Floor, Toronto, Canada M5T 3J1 (email: [email protected], [email protected]) Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Canada M3J 1P3

Abstract

We study conditions that will ensure that a crossed product of a C*-algebra by a discrete exact group is purely infinite (simple or non-simple). We are particularly interested in the case of a discrete non-amenable exact group acting on a commutative C*-algebra, where our sufficient conditions can be phrased in terms of paradoxicality of subsets of the spectrum of the abelian C*-algebra. As an application of our results we show that every discrete countable non-amenable exact group admits a free amenable minimal action on the Cantor set such that the corresponding crossed product C*-algebra is a Kirchberg algebra in the UCT class.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Anantharaman-Delaroche, C.. Système dynamiques non commutatifs et moyennabilité. Math. Ann. 279 (1987), 297315.CrossRefGoogle Scholar
[2]Anantharaman-Delaroche, C.. Purely infinite C *-algebras arising from dynamical systems. Bull. Soc. Math. France 125 (1997), 199225.CrossRefGoogle Scholar
[3]Anantharaman-Delaroche, C.. Amenability and exactness for dynamical systems and their C *-algebras. Trans. Amer. Math. Soc. 354(10) (2002), 41534178.CrossRefGoogle Scholar
[4]Archbold, R. J. and Spielberg, J. S.. Topologically free actions and ideals in discrete C *-dynamical systems. Proc. Edinburgh Math. Soc. (2) 37(1) (1994), 119124.CrossRefGoogle Scholar
[5]Blanchard, E. and Kirchberg, E.. Non-simple purely infinite C *-algebras: the Hausdorff case. J. Funct. Anal. 207 (2004), 461513.CrossRefGoogle Scholar
[6]Brouwer, L. E.  J.. On the structure of perfect sets of points. Proc. Akad. Amsterdam 12 (1910), 785794.Google Scholar
[7]Brown, L. G. and Pedersen, G. K.. C *-algebras of real rank zero. J. Funct. Anal. 99 (1991), 131149.CrossRefGoogle Scholar
[8]Brown, N. P. and Ozawa, N.. C *-Algebras and Finite Dimensional Approximations (Graduate Studies in Mathematics, 88). American Mathematical Society, Providence, RI, 2008.CrossRefGoogle Scholar
[9]Ellis, R.. Universal minimal sets. Proc. Amer. Math. Soc. 11 (1960), 540543.CrossRefGoogle Scholar
[10]Exel, R., Laca, M. and Quigg, J.. Partial dynamical systems and C*-algebras generated by partial isometries. J. Operator Theory 47 (2002), 169186.Google Scholar
[11]Folland, G. B.. Real Analysis: Modern Techniques and Their Applications (Pure and Applied Mathematics (New York)). Wiley Interscience, New York, 1984.Google Scholar
[12]Goodearl, K. R. and Handelman, D.. Rank functions and K 0 of regular rings. J. Pure Appl. Algebra 7 (1976), 195216.CrossRefGoogle Scholar
[13]Hjorth, G. and Molberg, M.. Free continuous actions on zero-dimensional spaces. Topology Appl. 153(7) (2006), 11161131.CrossRefGoogle Scholar
[14]Jeong, J. A. and Osaka, H.. Extremally rich C *-crossed products and the cancellation property. J. Aust. Math. Soc. Ser. A 64 (1998), 285301.CrossRefGoogle Scholar
[15]Jolissaint, P. and Robertson, G.. Simple purely infinite C *-algebras and n-filling actions. J. Funct. Anal. 175(1) (2000), 197213.CrossRefGoogle Scholar
[16]Kadison, R. V. and Ringrose, J. R.. Fundamentals of the Theory of Operator Algebras: Elementary Theory, Vol. I. Academic Press, New York, 1983.Google Scholar
[17]Kirchberg, E. and Rørdam, M.. Non-simple purely infinite C *-algebras. Amer. J. Math. 122(3) (2000), 637666.CrossRefGoogle Scholar
[18]Kirchberg, E. and Rørdam, M.. Infinite non-simple C *-algebras: absorbing the Cuntz algebra 𝒪. Adv. Math. 167 (2002), 195264.CrossRefGoogle Scholar
[19]Kirchberg, E. and Wassermann, S.. Exact groups and continuous bundles of C *-algebras. Math. Ann. 315(2) (1999), 169203.CrossRefGoogle Scholar
[20]Kishimoto, A. and Kumjian, A.. Crossed products of Cuntz algebras by quasi-free automorphisms. Operator Algebras and Their Applications (Waterloo, ON, 1994/1995) (Fields Institute Communications, 13). American Mathematical Society, Providence, RI, 1997, pp. 173192.Google Scholar
[21]Laca, M. and Spielberg, J. S.. Purely infinite C *-algebras from boundary actions of discrete group. J. Reine Angew. Math. 480 (1996), 125139.Google Scholar
[22]Olesen, D. and Pedersen, G. K.. Applications of the Connes spectrum to C *-dynamical systems, III. J. Funct. Anal. 45(3) (1981), 357390.CrossRefGoogle Scholar
[23]Ortega, E., Perera, F. and Rørdam, M.. The Corona factorization property, stability, and the Cuntz semigroup of a C *-algebra. Int. Math. Res. Not. IMRN to appear.Google Scholar
[24]Pasnicu, C. and Rørdam, M.. Purely infinite C *-algebras of real rank zero. J. Reine Angew. Math. 613 (2007), 5173.Google Scholar
[25]Paterson, A. L. T.. Amenability (Mathematical Surveys and Monographs, 29). American Mathematical Society, Providence, RI, 1988.CrossRefGoogle Scholar
[26]Renault, J.. The ideal structure of groupoid crossed product C *-algebras. J. Operator Theory 25(1) (1991), 336, with an appendix by Georges Skandalis.Google Scholar
[27]Rørdam, M.. On the structure of simple C *-algebras tensored with a UHF-algebra, II. J. Funct. Anal. 107 (1992), 255269.CrossRefGoogle Scholar
[28]Rørdam, M.. Classification of nuclear, simple C *-algebras. Classification of Nuclear C *-Algebras. Entropy in Operator Algebras (Operator Algebras and Non-commutative Geometry, 126). Eds. Cuntz, J. and Jones, V.. Springer, Berlin, 2001, pp. 1145.Google Scholar
[29]Sierakowski, A.. The ideal structure of reduced crossed products. Münster J. Math. 3 (2010), 237262.Google Scholar
[30]Sierakowski, A.. Discrete crossed product C *-algebras. PhD Thesis, University of Copenhagen, 2009.Google Scholar
[31]Tu, J.-L.. La conjecture de Baum–Connes pour les feuilletages moyennables. K-Theory 17(3) (1999), 215264.CrossRefGoogle Scholar
[32]Wagon, S.. The Banach–Tarski Paradox. Cambridge University Press, Cambridge, 1993.Google Scholar
[33]Williams, D.. Crossed Products of C *-Algebras (Mathematical Surveys and Monographs Lecture Notes, 134). American Mathematical Society, Providence, RI, 2007.CrossRefGoogle Scholar