Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T10:08:41.620Z Has data issue: false hasContentIssue false

Pointwise-recurrent dendrite maps

Published online by Cambridge University Press:  09 July 2012

ISSAM NAGHMOUCHI*
Affiliation:
Department of Mathematics, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, 7021, Tunisia (email: [email protected])

Abstract

Let $D$ be a dendrite and $f:D\rightarrow D$ a continuous map. Denote by $E(D)$ and $B(D)$ the sets of endpoints and branch points of $D$, respectively. We show that if $E(D)$ is countable, then $f$ is pointwise-recurrent if and only if $f$ is a pointwise-periodic homeomorphism; also, if $B(D)$ is discrete, then $f$ is pointwise-recurrent if and only if every point in $D\backslash E(D)$is periodic.

Type
Research Article
Copyright
Copyright © 2012 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Acosta, G. and Eslami, P.. On open maps between dendrites. Houston J. Math. 33 (2007), 753770.Google Scholar
[2]Arevalo, D., Charatonik, W. J., Covarrubias, P. P. and Simon, L.. Dendrites with a closed set of end points. Topology Appl. 115 (2001), 117.Google Scholar
[3]Balibrea, F., Hric, R. and Snoha, L.. Minimal sets on graphs and dendrites. Int. J. Bifurcation Chaos 13 (2003), 17211725.CrossRefGoogle Scholar
[4]Beardon, A. F.. Iteration of Rational Functions. Springer, New York, 1991.Google Scholar
[5]Blanchard, F., Glasner, E., Kolyada, S. and Maas, A.. On Li-Yorke pairs. J. Reine Angew. Math. 547 (2002), 5168.Google Scholar
[6]Blokh, A.. On transitive maps of one-dimensional branched manifolds. Differential-Difference Equations and Problems of Mathematical Physics. Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1984, pp. 39 (in Russian).Google Scholar
[7]Blokh, A.. Dynamical systems on one-dimensional branched manifolds, 1. Theory of Functions, Functional Analysis and Applications (Kharkov) 46 (1986), 8–18 (in Russian). Translation in J. Soviet Math. 48(5) (1990), 500–508.Google Scholar
[8]Blokh, A.. Dynamical systems on one-dimensional branched manifolds, 2. Theory of Functions, Functional Analysis and Applications (Kharkov) 47 (1987), 67–77 (in Russian). Translation in J. Soviet Math. 48(6) (1990), 668–674.Google Scholar
[9]Blokh, A.. Dynamical systems on one-dimensional branched manifolds, 3. Theory of Functions, Functional Analysis and Applications (Kharkov) 48 (1987), 32–46 (in Russian). Translation in J. Soviet Math. 49(2) (1990), 875–883.Google Scholar
[10]Block, L. S. and Coppel, W. A.. Dynamics in One Dimension (Lecture Notes in Mathematics, 1513). Springer, Berlin, 1992.Google Scholar
[11]Efremova, L. and Makhrova, E. N.. The dynamics of monotone maps of dendrites. Sb. Math. 192 (2001), 807821.Google Scholar
[12]Gordh, G. R. and Lum, L.. Monotone retracts and some characterizations of dendrites. Proc. Amer. Math. Soc. 59 (1976), 156158.Google Scholar
[13]Gottschalk, W. H.. Powers of homeomorphisms with almost periodic properties. Bull. Amer. Math. Soc. 50 (1944), 222227.Google Scholar
[14]Kolev, B. and Pérouème, M.-C.. Recurrent surface homeomorphisms. Math. Proc. Cambridge Philos. Soc. 124 (1998), 161168.Google Scholar
[15]Kuratowski, K.. Topology, Vol. 2. Academic Press, New York, 1968.Google Scholar
[16]Mai, J. H.. Pointwise-recurrent graph maps. Ergod. Th. & Dynam. Sys. 25 (2005), 629637.CrossRefGoogle Scholar
[17]Mai, J. H.. $\overline {R}=\overline {P}$ for maps of dendrites $X$ with $\mathrm {Card}(\mathrm {End}(X))\lt c$. Int. J. Bifurcation Chaos 19(4) (2009), 13911396.Google Scholar
[18]Montgomery, D.. Pointwise periodic homeomorphisms. Amer. J. Math. 59 (1937), 118120.Google Scholar
[19]Montgomery, D. and Zippin, L.. Topological Transformation Groups. Interscience Publishers, New York, 1955.Google Scholar
[20]Nadler, S. B.. Continuum Theory: An Introduction (Monographs and Textbooks in Pure and Applied Mathematics, 158). Marcel Dekker, New York, 1992.Google Scholar
[21]Naghmouchi, I.. Dynamics of monotone graph, dendrite and dendroid maps. Int. J. Bifurcation Chaos 21(11) (2011), 111.Google Scholar
[22]Naghmouchi, I.. Dynamical properties of monotone dendrite maps. Topology Appl. 159 (2012), 144149.Google Scholar
[23]Oversteegen, L. G. and Tymchatyn, E. D.. Recurrent homeomorphisms on $\mathbb {R}^{2}$ are periodic. Proc. Amer. Math. Soc. 110 (1990), 10831088.Google Scholar
[24]Weaver, N.. Pointwise periodic homeomorphisms of continua. Ann. of Math. (2) 95 (1972), 8385.Google Scholar