We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
[1]
Arzhantseva, G., Cashen, C. H. and Tao, J.. Growth tight actions. Pacific J. Math.278(1) (2015), 1–49.10.2140/pjm.2015.278.1CrossRefGoogle Scholar
[2]
Arzhantseva, G. N. and Cashen, C. H.. Cogrowth for group actions with strongly contracting elements. Ergod. Th. & Dynam. Sys.40(7) (2020), 1738–1754.10.1017/etds.2018.123CrossRefGoogle Scholar
Bader, U. and Furman, A.. Some ergodic properties of metrics on hyperbolic groups. Preprint, 2017, arXiv:1707.02020.Google Scholar
[5]
Bestvina, M., Bromberg, K. and Fujiwara, K.. Constructing group actions on quasi-trees and applications to mapping class groups. Publ. Math. Inst. Hautes Études Sci.122 (2015), 1–64.10.1007/s10240-014-0067-4CrossRefGoogle Scholar
[6]
Bestvina, M. and Fujiwara, K.. A characterization of higher rank symmetric spaces via bounded cohomology. Geom. Funct. Anal.19(1) (2009), 11–40.10.1007/s00039-009-0717-8CrossRefGoogle Scholar
[7]
Bridson, M. R. and Haefliger, A.. Metric Spaces of Non-Positive Curvature(Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319). Springer-Verlag, Berlin, 1999.10.1007/978-3-662-12494-9CrossRefGoogle Scholar
[8]
Brooks, R.. The fundamental group and the spectrum of the Laplacian. Comment. Math. Helv.56(4) (1981), 581–598.10.1007/BF02566228CrossRefGoogle Scholar
[9]
Burger, M. and Mozes, S.. CAT(-1)-spaces, divergence groups and their commensurators. J. Amer. Math. Soc.9(1) (1996), 57–93.10.1090/S0894-0347-96-00196-8CrossRefGoogle Scholar
[10]
Champetier, C.. Cocroissance des groupes à petite simplification. Bull. Lond. Math. Soc.25(5) (1993), 438–444.10.1112/blms/25.5.438CrossRefGoogle Scholar
[11]
Charney, R. and Sultan, H.. Contracting boundaries of CAT(0) spaces. J. Topol.8(1) (2015), 93–117.10.1112/jtopol/jtu017CrossRefGoogle Scholar
[12]
Cohen, J. M.. Cogrowth and amenability of discrete groups. J. Funct. Anal.48(3) (1982), 301–309.10.1016/0022-1236(82)90090-8CrossRefGoogle Scholar
[13]
Coornaert, M.. Mesures de Patterson–Sullivan sur le bord d’un espace hyperbolique au sens de Gromov. Pacific J. Math.159(2) (1993), 241–270.10.2140/pjm.1993.159.241CrossRefGoogle Scholar
[14]
Coornaert, M. and Papadopoulos, A.. Horofunctions and symbolic dynamics on Gromov hyperbolic groups. Glasg. Math. J.43(3) (2001), 425–456.10.1017/S0017089501030063CrossRefGoogle Scholar
[15]
Cordes, M.. Morse boundaries of proper geodesic metric spaces. Groups Geom. Dyn.11(4) (2017), 1281–1306.10.4171/ggd/429CrossRefGoogle Scholar
[16]
Coulon, R.. Growth of periodic quotients of hyperbolic groups. Algebr. Geom. Topol.13(6) (2013), 3111–3133.10.2140/agt.2013.13.3111CrossRefGoogle Scholar
[17]
Coulon, R.. Ergodicity of the geodesic flow for groups with a contracting element. Preprint, 2023, arXiv:2303.01390.Google Scholar
[18]
Coulon, R., Dal’Bo, F. and Sambusetti, A.. Growth gap in hyperbolic groups and amenability. Geom. Funct. Anal.28(5) (2018), 1260–1320.10.1007/s00039-018-0459-6CrossRefGoogle Scholar
[19]
Coulon, R., Dougall, R., Schapira, B. and Tapie, S.. Twisted Patterson–Sullivan measures and applications to amenability and coverings. Preprint, 2018, arXiv:1809.10881,Mem. Amer. Math. Soc., to appear.Google Scholar
[20]
Dahmani, F., Futer, D. and Wise, D. T.. Growth of quasiconvex subgroups. Math. Proc. Cambridge Philos. Soc.167(3) (2019), 505–530.10.1017/S0305004118000440CrossRefGoogle Scholar
[21]
Eskin, A., Mirzakhani, M. and Rafi, K.. Counting closed geodesics in strata. Invent. Math.215(2) (2019), 535–607.10.1007/s00222-018-0832-yCrossRefGoogle Scholar
[22]
Eymard, P.. Moyennes invariantes et représentations unitaires(Lecture Notes in Mathematics, 300). Springer-Verlag, Berlin, 1972.10.1007/BFb0060750CrossRefGoogle Scholar
[23]
Gerasimov, V. and Potyagailo, L.. Quasiconvexity in relatively hyperbolic groups. J. Reine Angew. Math.710 (2016), 95–135.10.1515/crelle-2015-0029CrossRefGoogle Scholar
[24]
Grigorchuk, R. I.. Symmetric random walks on discrete groups. Uspekhi Mat. Nauk32(6(198)) (1977), 217–218.Google Scholar
[25]
Grigorchuk, R. I.. Symmetrical random walks on discrete groups. Multicomponent Random Systems. Eds. Dobrushin, R. L., Sinai, Ya. G. and Griffeath, D.. Dekker, New York, 1980, pp. 285–325.Google Scholar
[26]
Gromov, M.. Hyperbolic groups. Essays in Group Theory. Ed. Gersten, S. M.. Springer, New York, NY, 1987, pp. 75–263.10.1007/978-1-4613-9586-7_3CrossRefGoogle Scholar
[27]
Gurevich, B. M. and Savchenko, S. V.. Thermodynamic formalism for symbolic Markov chains with a countable number of states. Uspekhi Mat. Nauk53(2(320)) (1998), 3–106.Google Scholar
[28]
Jaerisch, J. and Matsuzaki, K.. Growth and cogrowth of normal subgroups of a free group. Proc. Amer. Math. Soc.145(10) (2017), 4141–4149.10.1090/proc/13568CrossRefGoogle Scholar
[29]
Knieper, G.. On the asymptotic geometry of nonpositively curved manifolds. Geom. Funct. Anal.7(4) (1997), 755–782.10.1007/s000390050025CrossRefGoogle Scholar
[30]
Knieper, G.. The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds. Ann. of Math. (2)148(1) (1998), 291–314.10.2307/120995CrossRefGoogle Scholar
[31]
Kochen, S. and Stone, C.. A note on the Borel–Cantelli lemma. Illinois J. Math.8 (1964), 248–251.10.1215/ijm/1256059668CrossRefGoogle Scholar
[32]
Li, J. and Wise, D. T.. No growth-gaps for special cube complexes. Groups Geom. Dyn.14(1) (2020), 117–135.10.4171/ggd/537CrossRefGoogle Scholar
[33]
Link, G.. Hopf–Tsuji–Sullivan dichotomy for quotients of Hadamard spaces with a rank one isometry. Discrete Contin. Dyn. Syst.38(11) (2018), 5577–5613.10.3934/dcds.2018245CrossRefGoogle Scholar
[34]
Margulis, G. A.. Certain applications of ergodic theory to the investigation of manifolds of negative curvature. Funkcional. Anal. i Prilozen.3(4) (1969), 89–90.Google Scholar
[35]
Matsuzaki, K. and Yabuki, Y.. The Patterson–Sullivan measure and proper conjugation for Kleinian groups of divergence type. Ergod. Th. & Dynam. Sys.29(2) (2009), 657–665.10.1017/S0143385708080267CrossRefGoogle Scholar
[36]
Matsuzaki, K., Yabuki, Y. and Jaerisch, J.. Normalizer, divergence type, and Patterson measure for discrete groups of the Gromov hyperbolic space. Groups Geom. Dyn.14(2) (2020), 369–411.10.4171/ggd/548CrossRefGoogle Scholar
[37]
Minsky, Y. N.. Quasi-projections in Teichmüller space. J. Reine Angew. Math.473 (1996), 121–136.Google Scholar
[38]
Murray, D.. Topology and dynamics of the contracting boundary of cocompact
$CAT(0)$
spaces.Pacific J. Math.299(1) (2019), 89–116.10.2140/pjm.2019.299.89CrossRefGoogle Scholar
[39]
Patterson, S. J.. The limit set of a Fuchsian group. Acta Math.136(3–4) (1976), 241–273.10.1007/BF02392046CrossRefGoogle Scholar
[40]
Qing, Y. and Rafi, K.. Sublinearly Morse boundary I: CAT(0) spaces. Adv. Math.404 (2022), Paper no. 108442, 51pp.10.1016/j.aim.2022.108442CrossRefGoogle Scholar
[41]
Qing, Y., Rafi, K. and Tiozzo, G.. Sublinearly Morse boundary II: Proper geodesic spaces. Preprint, 2020, arXiv:2011.03481.Google Scholar
[42]
Roblin, T.. Un Théorème de Fatou Pour les Densités Conformes Avec Applications Aux Revêtements Galoisiens en Courbure Négative. Israel J. Math.147(1) (2005), 333–357.10.1007/BF02785371CrossRefGoogle Scholar
[43]
Sarig, O. M.. Thermodynamic formalism for null recurrent potentials. Israel J. Math.121 (2001), 285–311.10.1007/BF02802508CrossRefGoogle Scholar
[44]
Schapira, B. and Tapie, S.. Regularity of entropy, geodesic currents and entropy at infinity. Ann. Sci. Éc. Norm. Supér. (4)54(1) (2021), 1–68.10.24033/asens.2455CrossRefGoogle Scholar
[45]
Shukhov, A. G.. On the dependence of the growth exponent on the length of the defining relation. Mat. Zametki65(4) (1999), 612–618.Google Scholar
Sisto, A.. Contracting elements and random walks. J. Reine Angew. Math.742 (2018), 79–114.10.1515/crelle-2015-0093CrossRefGoogle Scholar
[48]
Sullivan, D.. Related aspects of positivity in Riemannian geometry. J. Differential Geom.25(3) (1987), 327–351.10.4310/jdg/1214440979CrossRefGoogle Scholar
[49]
Yang, W.. Growth tightness for groups with contracting elements. Math. Proc. Cambridge Philos. Soc.157(2) (2014), 297–319.10.1017/S0305004114000322CrossRefGoogle Scholar
[50]
Yang, W.. Statistically convex-cocompact actions of groups with contracting elements. Int. Math. Res. Not. IMRN2019(23) (2019), 7259–7323.10.1093/imrn/rny001CrossRefGoogle Scholar
[51]
Yang, W.. Genericity of contracting elements in groups. Math. Ann.376(3–4) (2020), 823–861.10.1007/s00208-018-1758-9CrossRefGoogle Scholar
[52]
Yang, W.. Conformal dynamics at infinity for groups with contracting elements. Preprint, 2023, arXiv:2208.04861.Google Scholar