Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T01:17:11.659Z Has data issue: false hasContentIssue false

Pattern equivariant functions, deformations and equivalence of tiling spaces

Published online by Cambridge University Press:  01 August 2008

JOHANNES KELLENDONK*
Affiliation:
Université de Lyon, Université Lyon 1, CNRS, UMR 5208 Institut Camille Jordan, Batiment du Doyen Jean Braconnier, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

Abstract

We re-investigate the theory of deformations of tilings using P-equivariant cohomology. In particular, we relate the notion of asymptotically negligible shape functions introduced by Clark and Sadun to weakly P-equivariant forms. We then investigate more closely the relation between deformations of patterns and homeomorphism or topological conjugacy of pattern spaces.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Baake, M., Schlottmann, M. and Jarvis, P. D.. Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability. J. Phys. A: Math. Gen. 24 (1991), 46374654.CrossRefGoogle Scholar
[2]Clark, A. and Sadun, L.. When shape matters: deformations of tiling spaces. Ergod. Th. & Dynam. Sys. 26 (2006), 6986.CrossRefGoogle Scholar
[3]Gähler, F.. Talk given at the conference ‘Aperiodic Order, Dynamical Systems, Operator Algebras and Topology’ 2002, slides available at: www.pims.math.ca/science/2002/adot/lectnotes/Gaehler.Google Scholar
[4]Kellendonk, J.. Topological equivalence of tilings. J. Math. Phys. 38 (1997), 18231842.CrossRefGoogle Scholar
[5]Kellendonk, J.. Pattern-equivariant functions and cohomology. J. Phys. A: Math. Gen. 36 (2003), 18.CrossRefGoogle Scholar
[6]Kellendonk, J. and Richard, S.. Topological boundary maps in physics: general theory and applications. Perspectives in Operator Algebras and Mathematical Physics. Theta, Bucharest, 2008, pp. 105121.Google Scholar
[7]Kellendonk, J. and Putnam, I. F.. The Ruelle–Sullivan map for actions of . Math. Ann. 334 (2006), 693711.CrossRefGoogle Scholar
[8]Sadun, L.. Tiling spaces are inverse limits. J. Math. Phys. 44 (2003), 54105414.CrossRefGoogle Scholar
[9]Sadun, L.. Pattern-equivariant cohomology with integer coefficients. Ergod. Th. & Dynam. Sys. 27(6) (2007), 19911998.CrossRefGoogle Scholar
[10]Sadun, L. and Williams, R. F.. Tiling spaces are Cantor set fiber bundles. Ergod. Th. & Dynam. Sys. 23 (2003), 307316.CrossRefGoogle Scholar