Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-25T22:13:07.073Z Has data issue: false hasContentIssue false

A parameter ASIP for the quadratic family

Published online by Cambridge University Press:  24 September 2024

MAGNUS ASPENBERG
Affiliation:
Centre for Mathematical Sciences, Lund University, Box 118, 221 00 Lund, Sweden (e-mail: [email protected])
VIVIANE BALADI*
Affiliation:
Institute for Theoretical Studies, ETH, 8092 Zürich, Switzerland Sorbonne Université and Université Paris Cité, CNRS, Laboratoire de Probabilités, Statistique et Modélisation, F-75005 Paris, France (e-mail: [email protected])
TOMAS PERSSON
Affiliation:
Centre for Mathematical Sciences, Lund University, Box 118, 221 00 Lund, Sweden (e-mail: [email protected])

Abstract

Consider the quadratic family $T_a(x) = a x (1 - x)$ for $x \in [0, 1]$ and mixing Collet–Eckmann (CE) parameters $a \in (2,4)$. For bounded $\varphi $, set $\tilde \varphi _{a} := \varphi - \int \varphi \, d\mu _a$, with $\mu _a$ the unique acim of $T_a$, and put $(\sigma _a (\varphi ))^2 := \int \tilde \varphi _{a}^2 \, d\mu _a + 2 \sum _{i>0} \int \tilde \varphi _{a} (\tilde \varphi _{a} \circ T^i_{a}) \, d\mu _a$. For any mixing Misiurewicz parameter $a_{*}$, we find a positive measure set $\Omega _{*}$ of mixing CE parameters, containing $a_{*}$ as a Lebesgue density point, such that for any Hölder $\varphi $ with $\sigma _{a_{*}}(\varphi )\ne 0$, there exists $\epsilon _\varphi>0$ such that, for normalized Lebesgue measure on $\Omega _{*}\cap [a_{*}-\epsilon _\varphi , a_{*}+\epsilon _\varphi ]$, the functions $\xi _i(a)=\tilde \varphi _a(T_a^{i+1}(1/2))/\sigma _a (\varphi )$ satisfy an almost sure invariance principle (ASIP) for any error exponent $\gamma>2/5$. (In particular, the Birkhoff sums satisfy this ASIP.) Our argument goes along the lines of Schnellmann’s proof for piecewise expanding maps. We need to introduce a variant of Benedicks–Carleson parameter exclusion and to exploit fractional response and uniform exponential decay of correlations from Baladi et al [Whitney–Hölder continuity of the SRB measure for transversal families of smooth unimodal maps. Invent. Math. 201 (2015), 773–844].

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aspenberg, M.. Slowly recurrent Collet–Eckmann maps on the Riemann sphere. Math. Annalen, to appear, doi: 10.1007/s00208-024-02800-4.CrossRefGoogle Scholar
Avila, A. and Moreira, C. G.. Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative. Astérisque 286 (2003), 81118.Google Scholar
Avila, A. and Moreira, C. G.. Statistical properties of unimodal maps: physical measures, periodic points and pathological laminations. Publ. Math. Inst. Hautes Études Sci. 101 (2005), 167.CrossRefGoogle Scholar
Baladi, V., Benedicks, M. and Schnellmann, D.. Whitney–Hölder continuity of the SRB measure for transversal families of smooth unimodal maps. Invent. Math. 201 (2015), 773844.CrossRefGoogle Scholar
Benedicks, M. and Carleson, L.. On iterations of $1-a{x}^2$ on $\left(-1,1\right)$ . Ann. of Math. (2) 122 (1985), 125.CrossRefGoogle Scholar
Benedicks, M. and Carleson, L.. The dynamics of the Hénon map. Ann. of Math. (2) 133 (1991), 73169.CrossRefGoogle Scholar
Baladi, V. and Smania, D.. Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps. Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), 861926.CrossRefGoogle Scholar
Baladi, V. and Smania, D.. Fractional susceptibility functions for the quadratic family: Misiurewicz–Thurston parameters. Comm. Math. Phys. 385 (2021), 19572007.CrossRefGoogle Scholar
Chow, Y. S.. Local convergence of martingales and the law of large numbers. Ann. Math. Stat. 36 (1965), 552558.CrossRefGoogle Scholar
de Lima, A. and Smania, D.. Central limit theorem for the modulus of continuity of averages of observables on transversal families of piecewise expanding unimodal maps. J. Inst. Math. Jussieu 17 (2018), 673733.CrossRefGoogle Scholar
de Melo, W. and van Strien, S.. One-Dimensional Dynamics (Ergebnisse der Mathematik und ihrer Grenzgebiete, 25). Springer, Berlin, 1993.CrossRefGoogle Scholar
Gál, I. S. and Koksma, J. F.. Sur l’ordre de grandeur des fonctions sommables. Indag. Math. (N.S.) 12 (1950), 192207.Google Scholar
Gouëzel, S.. Almost sure invariance principle for dynamical systems by spectral methods. Ann. Probab. 38 (2010), 13691671.CrossRefGoogle Scholar
Gao, B. and Shen, W. X.. Summability implies Collet–Eckmann almost surely. Ergod. Th. & Dynam. Sys. 34 (2014), 11841209.CrossRefGoogle Scholar
Gao, B. and Shen, W. X.. Private communications, 2021–2022.Google Scholar
Guckenheimer, J.. The growth of topological entropy for one dimensional maps. Global Theory of Dynamical Systems (Lecture Notes in Mathematics, 819). Ed. Nitecki, Z. and Robinson, C.. Springer, Berlin, 1980, pp. 216223.CrossRefGoogle Scholar
Hall, P. and Heyde, C. C.. Martingale Limit Theory and its Application. Academic Press, New York, 1980.Google Scholar
Hewett, D. P. and Moiola, A.. On the maximal Sobolev regularity of distributions supported by subsets of Euclidean space. Anal. Appl. (Singap.) 15 (2017), 731770.CrossRefGoogle Scholar
Kac, M.. Probability methods in some problems of analysis and number theory. Bull. Amer. Math. Soc. (N.S.) 55 (1949), 641665.CrossRefGoogle Scholar
Keller, G. and Liverani, C.. Stability of the spectrum for transfer operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 28 (1999), 141152.Google Scholar
Keller, G. and Nowicki, T.. Spectral theory, zeta functions and the distribution of periodic points for Collet–Eckmann maps. Comm. Math. Phys. 149 (1992), 3169.CrossRefGoogle Scholar
Melbourne, I. and Nicol, M.. Almost sure invariance principle for nonuniformly hyperbolic systems. Comm. Math. Phys. 260 (2005), 131146.CrossRefGoogle Scholar
Moreira, F. J. S.. Chaotic dynamics of quadratic maps. Unpublished notes, 1992, http://www.fc.up.pt/cmup/fsmoreir/downloads/BC.pdf.Google Scholar
Philipp, W. and Stout, W. F.. Almost sure invariance principles for partial sums of weakly dependent random variables. Mem. Amer. Math. Soc. 161 (1975), iv+140pp.Google Scholar
Runst, T. and Sickel, W.. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Walter de Gruyter & Co., Berlin, 1996.CrossRefGoogle Scholar
Ruelle, D.. Structure and $f$ -dependence of the A.C.I.M. for a unimodal map $f$ of Misiurewicz type. Comm. Math. Phys. 287 (2009), 10391070.CrossRefGoogle Scholar
Schnellmann, D.. Law of iterated logarithm and invariance principle for one-parameter families of interval maps. Probab. Theory Related Fields 162 (2015), 365409.CrossRefGoogle Scholar
Sedro, J.. Pre-threshold fractional susceptibility functions at Misiurewicz parameters. Nonlinearity 34 (2021), 71747184.CrossRefGoogle Scholar
Strichartz, R.. Multipliers on fractional Sobolev spaces. J. Math. Mech. 16 (1967), 10311060.Google Scholar
Thomine, D.. A spectral gap for transfer operators of piecewise expanding maps. Discrete Contin. Dyn. Syst. 30 (2011), 917944.CrossRefGoogle Scholar
Tiozzo, G.. Metrics on trees I. The tower algorithm for interval maps. Preprint, 2021, arXiv:2112.02398.Google Scholar
Tsujii, M.. Positive Lyapunov exponents in families of one-dimensional dynamical systems. Invent. Math. 111 (1993), 113137.CrossRefGoogle Scholar
Tsujii, M.. A simple proof for monotonicity of entropy in the quadratic family. Ergod. Th. & Dynam. Sys. 20 (2000), 925933.CrossRefGoogle Scholar
Zakeri, S.. External rays and the real slice of the Mandelbrot set. Ergod. Th. & Dynam. Sys. 23 (2003), 637660.CrossRefGoogle Scholar