Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T04:31:18.526Z Has data issue: false hasContentIssue false

On the Ruelle eigenvalue sequence

Published online by Cambridge University Press:  15 September 2008

OSCAR F. BANDTLOW
Affiliation:
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK (email: [email protected], [email protected])
OLIVER JENKINSON
Affiliation:
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK (email: [email protected], [email protected])

Abstract

For certain analytic data, we show that the eigenvalue sequence of the associated transfer operator ℒ is insensitive to the holomorphic function space on which ℒ acts. Explicit bounds on this eigenvalue sequence are established.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Artuso, R., Aurell, E. and Cvitanović, P.. Recycling of strange sets. II. Applications. Nonlinearity 3 (1990), 361386.Google Scholar
[2] Avez, A.. Differential Calculus. Wiley, Chichester, 1986.Google Scholar
[3] Baladi, V.. Positive Transfer Operators and Decay of Correlations (Advanced Series in Nonlinear Dynamics, 16). World Scientific, Singapore, 2000.CrossRefGoogle Scholar
[4] Bandtlow, O. F. and Jenkinson, O.. Explicit a priori bounds on transfer operator eigenvalues. Comm. Math. Phys. 276 (2007), 901905.CrossRefGoogle Scholar
[5] Bandtlow, O. F. and Jenkinson, O.. Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions. Adv. Math. 218 (2008), 902925.CrossRefGoogle Scholar
[6] Christiansen, F., Cvitanović, P. and Rugh, H.-H.. The spectrum of the period-doubling operator in terms of cycles. J. Phys. A: Math. Gen. 23 (1990), L713L717.Google Scholar
[7] Christiansen, F., Paladin, G. and Rugh, H.-H.. Determination of correlation spectra in chaotic systems. Phys. Rev. Lett. 65 (1990), 20872090.Google Scholar
[8] Earle, C. J. and Hamilton, R. S.. A fixed point theorem for holomorphic mappings. Global Analysis (Proceedings Symposia in Pure Mathematics, XVI). Eds. S. Chern and S. Smale. American Mathematical Society, Providence, RI, 1970, pp. 6165.CrossRefGoogle Scholar
[9] Farkov, Yu. A.. The N-widths of Hardy–Sobolev spaces of several complex variables. J. Approx. Theory 75 (1993), 183197.CrossRefGoogle Scholar
[10] Grabiner, S.. Spectral consequences of the existence of intertwining operators. Ann. Soc. Math. Polonae Ser. 1 22 (1970), 227238.Google Scholar
[11] Grothendieck, A.. Produits Tensoriels Topologiques et Espaces Nucléaires (Memoirs of the American Mathematical Society, 16). American Mathematical Society, Providence, RI, 1955.Google Scholar
[12] Guillopé, L., Lin, K. and Zworski, M.. The Selberg zeta function for convex co-compact Schottky groups. Comm. Math. Phys. 245 (2004), 149176.CrossRefGoogle Scholar
[13] Hinrichs, A.. Optimal Weyl inequality in Banach spaces. Proc. Amer. Math. Soc. 134 (2006), 731735.Google Scholar
[14] Jiang, Y., Morita, T. and Sullivan, D.. Expanding direction of the period-doubling operator. Comm. Math. Phys. 144 (1992), 509520.CrossRefGoogle Scholar
[15] Jenkinson, O. and Pollicott, M.. Orthonormal expansions of invariant densities for expanding maps. Adv. Math. 192 (2005), 134.CrossRefGoogle Scholar
[16] Krantz, S. G.. Function Theory of Several Complex Variables, 2nd edn. AMS Chelsea, New York, 1992.Google Scholar
[17] Mayer, D. H.. On a ζ function related to the continued fraction transformation. Bull. Soc. Math. France 104 (1976), 195203.Google Scholar
[18] Mayer, D. H.. On composition operators on Banach spaces of holomorphic functions. J. Funct. Anal. 35 (1980), 191206.CrossRefGoogle Scholar
[19] Mayer, D. H.. Continued fractions and related transformations. Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces. Eds. T. Bedford, M. Keane and C. Series. Oxford University Press, Oxford, 1991.Google Scholar
[20] Pietsch, A.. Eigenvalues and s-Numbers. Cambridge University Press, Cambridge, 1987.Google Scholar
[21] Pollicott, M.. Some applications of thermodynamic formalism to manifolds of constant negative curvature. Adv. Math. 85 (1991), 161192.Google Scholar
[22] Pollicott, M.. A note on the Artuso–Aurell–Cvitanovic approach to the Feigenbaum tangent operator. J. Stat. Phys. 62 (1991), 257267.CrossRefGoogle Scholar
[23] Pollicott, M. and Rocha, A.. A remarkable formula for the determinant of the Laplacian. Invent. Math. 130 (1997), 399414.Google Scholar
[24] Range, R. M.. Holomorphic Functions and Integral Representations in Several Complex Variables. Springer, New York, 1986.Google Scholar
[25] Rudin, W.. Function Theory in the Unit Ball of C n (Grundlehren der Mathematischen Wissenschaften, 241). Springer, Berlin, 1980.Google Scholar
[26] Ruelle, D.. Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34 (1976), 231242.CrossRefGoogle Scholar
[27] Ruelle, D.. Resonances for Axiom A flows. J. Differential Geom. 25 (1987), 117137.Google Scholar
[28] Schaefer, H. H.. Topological Vector Spaces. Springer, New York, 1971.Google Scholar
[29] Weyl, H.. Inequalities between two kinds of eigenvalues of a linear transformation. Proc. Natl Acad. Sci. USA 35 (1949), 408411.Google Scholar