Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T03:17:12.021Z Has data issue: false hasContentIssue false

On the growth of quotients of Kleinian groups

Published online by Cambridge University Press:  26 May 2010

FRANÇOISE DAL’BO
Affiliation:
IRMAR, Université de Rennes-I, Campus de Beaulieu, 35042 Rennes Cedex, France (email: [email protected])
MARC PEIGNÉ
Affiliation:
LMPT, UMR 6083, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France (email: [email protected], [email protected])
JEAN-CLAUDE PICAUD
Affiliation:
LMPT, UMR 6083, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France (email: [email protected], [email protected])
ANDREA SAMBUSETTI
Affiliation:
Istituto di Matematica G. Castelnuovo Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy (email: [email protected])

Abstract

We study the growth and divergence of quotients of Kleinian groups G (i.e. discrete, torsionless groups of isometries of a Cartan–Hadamard manifold with pinched negative curvature). Namely, we give general criteria ensuring the divergence of a quotient group of G and the ‘critical gap property’ . As a corollary, we prove that every geometrically finite Kleinian group satisfying the parabolic gap condition (i.e. δP<δG for every parabolic subgroup P of G) is growth tight. These quotient groups naturally act on non-simply connected quotients of a Cartan–Hadamard manifold, so the classical arguments of Patterson–Sullivan theory are not available here; this forces us to adopt a more elementary approach, yielding as by-product a new elementary proof of the classical results of divergence for geometrically finite groups in the simply connected case. We construct some examples of quotients of Kleinian groups and discuss the optimality of our results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arzhantseva, G. N. and Lysenok, I. G.. Growth tightness for word hyperbolic groups. Math. Z. 241(3) (2002), 597611.CrossRefGoogle Scholar
[2]Babenko, I. K.. Asymptotic invariants of smooth manifolds. Russian Acad. Sci. Izv. Math. 41(1) (1993), 138.Google Scholar
[3]Babillot, M. and Peigné, M.. Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps. Bull. Soc. Math. France 134(1) (2006), 119163.CrossRefGoogle Scholar
[4]Bowditch, B.. Geometrical finiteness with variable negative curvature. Duke Math. J. 77 (1995), 229274.CrossRefGoogle Scholar
[5]Corlette, K. and Iozzi, A.. Limit sets of isometry groups of exotic hyperbolic spaces. Trans. Amer. Math. Soc. 351(4) (1999), 15071530.Google Scholar
[6]Dal’bo, F., Otal, J. P. and Peigné, M.. Séries de Poincaré des groupes géométriquement finis. Israel J. Math. 118 (2000), 109124.CrossRefGoogle Scholar
[7]Dal’bo, F., Peigné, M., Picaud, J. C. and Sambusetti, A.. On the growth of non-uniform lattices in pinched negatively curved manifolds. J. Reine Angew. Math. 627 (2009), 3152.Google Scholar
[8]de la Harpe, P.. Topics in Geometric Group Theory (Chicago Lectures in Mathematics). Chicago University Press, Chicago, 2000.Google Scholar
[9]Ghys, E. and de la Harpe, P.. Sur les groupes hyperboliques d’après Mikhael Gromov. Birkhäuser, Basel, 1990.CrossRefGoogle Scholar
[10]Grigorchuk, R. and de la Harpe, P.. On problems related to growth, entropy and spectrum in group theory. J. Dyn. Control Syst. 3(1) (1997), 5189.CrossRefGoogle Scholar
[11]Nicholls, P. J.. The Ergodic Theory of Discrete Groups (London Mathematical Society Lecture Note Series, 143). Cambridge University Press, Cambridge, 1989.CrossRefGoogle Scholar
[12]Otal, J. P. and Peigné, M.. Principe variationnel et groupes Kleiniens. Duke Math. J. 125(1) (2004), 1544.CrossRefGoogle Scholar
[13]Pólya, G. and Szegö, G.. Problems and Theorems in Analysis, Vol. I & II (Grundlehren der mathematischen Wissenschaften, 193 and 216). Springer, Berlin, 1972 & 1976.Google Scholar
[14]Robert, G.. Comptage pour des groupes co-compacts d’isométries d’un espace hyperbolique au sens de Gromov. Preprint.Google Scholar
[15]Roblin, T.. Ergodicité et equidistribution en courbure négative (Mémoires de la Société Mathématique de France (N.S.), 95). Société Mathématique de France, Paris, 2003.CrossRefGoogle Scholar
[16]Sambusetti, A.. Growth tightness of surfaces groups. Expositiones Mathematicae 20 (2002), 335363.Google Scholar
[17]Sambusetti, A.. Growth tightness of free and amalgamated products. Ann. Sci. École Norm. Sup. (4) série 35 (2002), 477488.Google Scholar
[18]Sambusetti, A.. Asymptotic properties of coverings in negative curvature. Geom. Topol. 12(1) (2008), 617637.CrossRefGoogle Scholar
[19]Sullivan, D.. The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171202.Google Scholar