Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T13:56:48.024Z Has data issue: false hasContentIssue false

On the geodesic flow on CAT(0) spaces

Published online by Cambridge University Press:  15 August 2019

CHARALAMPOS CHARITOS
Affiliation:
Mathematics Laboratory, Agricultural University of Athens, 11855Athens, Greece email [email protected], [email protected], [email protected]
IOANNIS PAPADOPERAKIS
Affiliation:
Mathematics Laboratory, Agricultural University of Athens, 11855Athens, Greece email [email protected], [email protected], [email protected]
GEORGIOS TSAPOGAS
Affiliation:
Mathematics Laboratory, Agricultural University of Athens, 11855Athens, Greece email [email protected], [email protected], [email protected]

Abstract

Under certain assumptions on CAT(0) spaces, we show that the geodesic flow is topologically mixing. In particular, the Bowen–Margulis’ measure finiteness assumption used by Ricks [Flat strips, Bowen–Margulis measures, and mixing of the geodesic flow for rank one CAT(0) spaces. Ergod. Th. & Dynam. Sys. 37 (2017), 939–970] is removed. We also construct examples of CAT(0) spaces that do not admit finite Bowen–Margulis measure.

Type
Original Article
Copyright
© Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anosov, D.V.. Geodesic Flows on Closed Riemannian Manifolds with Negative Curvature (Proceedings Stelkov Institute of Mathematics, 90). American Mathematical Society, Providence, RI, 1969.Google Scholar
Ballmann, W.. Lectures on Spaces of Non Positive Curvature. Birkhäuser, Basel, 1995.Google Scholar
Bridson, M. and Haefliger, A.. Metric Spaces of Non-Positive Curvature (Grundlehren der Mathematischen Wissenschaften, 319). Springer, Berlin, 1999.Google Scholar
Charitos, Ch. and Papadoperakis, I.. On the geometry of Hyperbolic surfaces with a conical singularity. Ann. Global Anal. Geom. 23(4) (2003), 323357.Google Scholar
Charitos, C. and Tsapogas, G.. Topological mixing in CAT(-1)-spaces. Trans. Amer. Math. Soc. 178 (2001), 235264.Google Scholar
Charitos, Ch., Papadoperakis, I. and Tsapogas, G.. The geometry of Euclidean surfaces with conical singularities. Math. Z. 284(3) (2016), 10731087.Google Scholar
Coornaert, M.. Sur les groupes proprement discontinus d’isometries des espaces hyperboliques au sens de Gromov. Thèse de ULP, Publication de IRMA, Strasburg, 1990.Google Scholar
Coornaert, M., Delzant, T. and Papadopoulos, A.. Géometrie et Théorie des Groupes (Lecture Notes in Mathematics, 1441). Springer, Berlin, 1980.Google Scholar
Dal’bo, F., Peigni, M., Picaud, J.-C. and Sambusetti, A.. Convergence and counting in infinite measure. Ann. Inst. Fourier (Grenoble) 67(2) (2017), 483520.Google Scholar
Eberlein, P.. Geodesic flows on negatively curved manifolds II. Trans. Amer. Math. Soc. 178 (1973), 5782.Google Scholar
Eberlein, P. and O’Neill, B.. Visibility manifolds. Pacific J. Math. 46 (1973), 45109.Google Scholar
Gromov, M.. Hyperbolic groups. Essays in Group Theory (MSRI Publications, 8). Springer, Berlin, 1987, pp. 75263.Google Scholar
Paulin, F.. Constructions of hyperbolic groups via hyperbolization of polyhedra. Group Theory from a Geometrical Viewpoint, ICTP, Trieste, Italy, March 26–April 6, 1990. Eds. Ghys, E. and Haefliger, A.. World Scientific, Italy, 1991.Google Scholar
Ricks, R.. Flat strips, Bowen–Margulis measures, and mixing of the geodesic flow for rank one CAT(0) spaces. Ergod. Th. & Dynam. Sys. 37 (2017), 939970.Google Scholar
Troyanov, M.. Les surfaces euclidiennes a singularites coniques. Enseign. Math. (2) 32(1–2) (1986), 7994.Google Scholar