Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T02:30:37.432Z Has data issue: false hasContentIssue false

On the cost of generating an equivalence relation

Published online by Cambridge University Press:  14 October 2010

Gilbert Levitt
Affiliation:
Laboratoire de Topologie et Géométrie, URA CNRS 1408, Université Toulouse III, 31062 Toulouse Cedex, France ([email protected])

Abstract

Given a measure-preserving equivalence relation R with countable classes, we study relations between the properties of R and metric invariants. We give applications to pseudogroups of measure-preserving homeomorphisms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Ad]Adams, S.. Trees and amenable equivalence relations. Ergod. Th. & Dynam. Sys. 10 (1990), 114.CrossRefGoogle Scholar
[CFW]Connes, A., Feldman, J. and Weiss, B.. An amenable equivalence relation is generated by a single transformation. Ergod. Th. & Dynam. Sys. 1 (1981), 431450.CrossRefGoogle Scholar
[FM]Feldman, J. and Moore, C.. Ergodic equivalence relations, cohomology and von Neumann algebras. I Trans. Amer. Math. Soc. 234 (1977), 289324.CrossRefGoogle Scholar
[Ga]Gaboriau, D.. Dynamique des systèmes d'isométries et actions de groupes sur les arbres réels. Thèse, Toulouse 1993.Google Scholar
[Gh]Ghys, E.. Topologie des feuilles génériques. Ann. Math. 141 (1995), 387422.CrossRefGoogle Scholar
[GL]Gaboriau, D. and Levitt, G.. The rank of actions on ℝ-trees. Ann. Sc. ENS (to appear).Google Scholar
[GLP1]Gaboriau, D., Levitt, G. and Paulin, F.. Pseudogroups of isometries of ℝ and Rips' theorem on free actions on ℝ-trees. Isr. J. Math. 87 (1994), 403428.CrossRefGoogle Scholar
[GLP2]Gaboriau, D., Levitt, G. and Paulin, F.. Pseudogroups of isometries of ℝ: reconstruction of free actions on ℝ-trees. Ergod. Th. & Dynam. Sys. 15 (1995), 633652.CrossRefGoogle Scholar
[Ha]Haefliger, A.. Groupoï des d'holonomie et classifiants. Structures Transverses des Feuilletages. Astérisque 116 (1984), 7097.Google Scholar
[Le1]Levitt, G.. 1-formes fermées singulières et groupe fondamental. Inv. Math. 88 (1987), 635667.CrossRefGoogle Scholar
[Le2]Levitt, G.. La dynamique des pseudogroupes de rotations. Inv. Math. 113 (1993), 633670.CrossRefGoogle Scholar
[Sa]Salem, E.. Riemannian foliations and pseudogroups of isometries. Appendix D in Molino, P., ed, Riemannian Foliations, Progress in Math. 73 (1988).Google Scholar