Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T19:48:24.534Z Has data issue: false hasContentIssue false

On conjugacy of natural extensions of one-dimensional maps

Published online by Cambridge University Press:  20 September 2022

J. BOROŃSKI
Affiliation:
National Supercomputing Centre IT4Innovations, University of Ostrava, IRAFM, 30. dubna 22, 70103 Ostrava, Czech Republic (e-mail: [email protected])
P. MINC
Affiliation:
Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA (e-mail: [email protected])
S. ŠTIMAC*
Affiliation:
Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10 000 Zagreb, Croatia

Abstract

We prove that for any non-degenerate dendrite D, there exist topologically mixing maps $F : D \to D$ and $f : [0, 1] \to [0, 1]$ such that the natural extensions (as known as shift homeomorphisms) $\sigma _F$ and $\sigma _f$ are conjugate, and consequently the corresponding inverse limits are homeomorphic. Moreover, the map f does not depend on the dendrite D and can be selected so that the inverse limit $\underleftarrow {\lim } (D,F)$ is homeomorphic to the pseudo-arc. The result extends to any finite number of dendrites. Our work is motivated by, but independent of, the recent result of the first and third author on conjugation of Lozi and Hénon maps to natural extensions of dendrite maps.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, G., Hernández-Gutiérrez, R., Naghmouchi, I. and Oprocha, P.. Periodic points and transitivity on dendrites. Ergod. Th. & Dynam. Sys. 37 (2017), 20172033.10.1017/etds.2015.137CrossRefGoogle Scholar
Baldwin, S.. Entropy estimates for transitive maps on trees. Topology 40 (2001), 551569.10.1016/S0040-9383(99)00074-9CrossRefGoogle Scholar
Barge, M.. Homoclinic intersections and indecomposability. Proc. Amer. Math. Soc. 101(3) (1987), 541544.10.1090/S0002-9939-1987-0908665-6CrossRefGoogle Scholar
Barge, M. and Diamond, B.. Stable and unstable manifold structures in the Hénon family. Ergod. Th. & Dynam. Sys. 19 (1999), 309338.10.1017/S0143385799126622CrossRefGoogle Scholar
Barge, M. and Holte, S.. Nearly one-dimensional Hénon attractors and inverse limits. Nonlinearity 8 (1995), 2942.10.1088/0951-7715/8/1/003CrossRefGoogle Scholar
Barge, M. and Martin, J.. Dense orbits on the interval. Michigan Math. J. 34 (1987), 311.10.1307/mmj/1029003477CrossRefGoogle Scholar
Bing, R. H.. A homogeneous indecomposable plane continuum. Duke Math. J. 15 (1948), 729742.10.1215/S0012-7094-48-01563-4CrossRefGoogle Scholar
Blokh, A. M.. The “spectral” decomposition for one-dimensional maps. Dynamics Reported: Expositions in Dynamical Systems (Dynamics Reported. New Series, 4). Eds. C. K. R. T. Jones, U. Kirchgraber and H.-O. Walther. Springer, Berlin, 1995, pp. 159.Google Scholar
Boroński, J. and Oprocha, P.. Rotational chaos and strange attractors on the 2-torus. Math. Z. 279 (2015), 689702.10.1007/s00209-014-1388-1CrossRefGoogle Scholar
Boroński, J. and Štimac, S.. Densely branching trees as models for Henon-like and Lozi-like attractors. Preprint, 2022, arXiv:2104.14780v2.10.1016/j.aim.2023.109191CrossRefGoogle Scholar
Boroński, J. P. and Oprocha, P.. On entropy of graph maps that give hereditarily indecomposable inverse limits. J. Dynam. Differential Equations 29 (2017), 685699.CrossRefGoogle Scholar
Boyland, P., de Carvalho, A. and Hall, T.. Inverse limits as attractors in parametrized families. Bull. Lond. Math. Soc. 45(5) (2013), 10751085.10.1112/blms/bdt032CrossRefGoogle Scholar
Boyland, P., de Carvalho, A. and Hall, T.. New rotation sets in a family of torus homeomorphisms. Invent. Math. 204(3) (2016), 895937.10.1007/s00222-015-0628-2CrossRefGoogle Scholar
Boyland, P., de Carvalho, A. and Hall, T.. Natural extensions of unimodal maps: prime ends of planar embeddings and semi-conjugacy to sphere homeomorphisms. Geom. Topol. 25(1) (2021), 111228.10.2140/gt.2021.25.111CrossRefGoogle Scholar
Bruin, H.. Planar embeddings of inverse limit spaces of unimodal maps. Topology Appl. 96 (1999), 191208.10.1016/S0166-8641(98)00054-6CrossRefGoogle Scholar
Byszewski, J., Falniowski, F. and Kwietniak, D.. Transitive dendrite map with zero entropy. Ergod. Th. & Dynam. Sys. 37 (2017), 20772083.10.1017/etds.2015.136CrossRefGoogle Scholar
Chéritat, A.. Relatively compact Siegel disks with non-locally connected boundaries. Math. Ann. 349 (2011), 529542.10.1007/s00208-010-0527-1CrossRefGoogle Scholar
Činč, J. and Oprocha, P.. Parametrized family of pseudo-arc attractors: physical measures and prime end rotations. Proc. London Math. Soc. 125(2) (2022), 318357.10.1112/plms.12448CrossRefGoogle Scholar
Drwiega, T. and Oprocha, P.. Topologically mixing maps and the pseudoarc. Ukrainian Math. J. 66 (2014), 197208.10.1007/s11253-014-0922-yCrossRefGoogle Scholar
Engelking, R.. General Topology (Sigma Series in Pure Mathematics, 6). Heldermann Verlag, Berlin, 1989.Google Scholar
Handel, M.. A pathological area preserving ${C}^{\infty }$ diffeomorphism of the plane. Proc. Amer. Math. Soc. 6 (1982), 163168.Google Scholar
Herman, M.-R.. Construction of some curious diffeomorphisms of the Riemann sphere. J. Lond. Math. Soc. (2) 34 (1986), 375384.10.1112/jlms/s2-34.2.375CrossRefGoogle Scholar
Hoehn, L. C. and Mouron, C.. Hierarchies of chaotic maps on continua. Ergod. Th. & Dynam. Sys. 34 (2014), 18971913.10.1017/etds.2013.32CrossRefGoogle Scholar
Hoehn, L. C. and Oversteegen, L. G.. A complete classification of homogeneous plane continua. Acta Math. 216 (2016), 177216.10.1007/s11511-016-0138-0CrossRefGoogle Scholar
Hoehn, L. C. and Oversteegen, L. G.. A complete classification of hereditarily equivalent plane continua. Adv. Math. 368 (2020), 107131, 8pp.10.1016/j.aim.2020.107131CrossRefGoogle Scholar
Kawamura, K., Tuncali, H. M. and Tymchatyn, E. D.. Hereditarily indecomposable inverse limits of graphs. Fund. Math. 185 (2005), 195210.10.4064/fm185-3-1CrossRefGoogle Scholar
Kościelniak, P., Oprocha, P. and Tuncali, M.. Hereditarily indecomposable inverse limits of graphs: shadowing, mixing and exactness. Proc. Amer. Math. Soc. 142 (2014), 681694.10.1090/S0002-9939-2013-11768-5CrossRefGoogle Scholar
Kuratowski, K.. Topology. Vol. II. Academic Press, New York–London, and PWN - Polish Scientific Publishers, Warsaw, 1968.Google Scholar
Kwapisz, J.. A toral diffeomorphism with a nonpolygonal rotation set. Nonlinearity 8 (1995), 461476.10.1088/0951-7715/8/4/001CrossRefGoogle Scholar
Li, S.. Dynamical properties of the shift maps on the inverse limit spaces. Ergod. Th. & Dynam. Sys. 12 (1992), 95108.10.1017/S0143385700006611CrossRefGoogle Scholar
Lyubich, M. and Minsky, Y.. Laminations in holomorphic dynamics. J. Differential Geom. 45 (1997), 1794.Google Scholar
Martínez-de-la-Vega, V., Martínez-Montejano, J. M. and Mouron, C.. Mixing homeomorphisms and indecomposability. Topology Appl. 254 (2019), 5058.10.1016/j.topol.2018.12.012CrossRefGoogle Scholar
Minc, P. and Transue, W. R. R.. A transitive map on $\left[0,1\right]$ whose inverse limit is the pseudoarc. Proc. Amer. Math. Soc. 111 (1991), 11651170.Google Scholar
Moise, E. E.. An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua. Trans. Amer. Math. Soc. 63 (1948), 581594.CrossRefGoogle Scholar
Mouron, C.. Entropy of shift maps of the pseudo-arc. Topology Appl. 159 (2012), 3439.10.1016/j.topol.2011.07.014CrossRefGoogle Scholar
Nadler, S. B. Jr. Continuum Theory: An Introduction (Monographs and Textbooks in Pure and Applied Mathematics, 158). Marcel Dekker, Inc., New York, 1992.Google Scholar
Rempe-Gillen, L.. Arc-like continua, Julia sets of entire functions, and Eremenko’s Conjecture. Preprint, 2019, arXiv:1610.06278v4.Google Scholar
Rohlin, V. A.. Lectures on the entropy theory of transformations with invariant measure. Uspekhi Mat. Nauk 22 (1967), 356.Google Scholar
Ruiz del Portal, F. R.. Stable sets of planar homeomorphisms with translation pseudo-arcs. Discrete Contin. Dyn. Syst. Ser. S 12(8) (2019), 23792390.Google Scholar
Wazewski, T.. Sur les courbes de Jordan ne renfermant aucune courbe simple fermeé de Jordan. Ann. Soc. Polonaise Math. 2 (1923), 49170.Google Scholar
Whyburn, G. T.. Analytic Topology (American Mathematical Society Colloquium Publications, 28). American Mathematical Society, Providence, RI, 1942.10.1090/coll/028CrossRefGoogle Scholar
Williams, R. F.. A note on unstable homeomorphisms. Proc. Amer. Math. Soc. 6 (1955), 308309.10.1090/S0002-9939-1955-0068211-8CrossRefGoogle Scholar
Williams, R. F.. One-dimensional non-wandering sets. Topology 6 (1967), 473487.10.1016/0040-9383(67)90005-5CrossRefGoogle Scholar