Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T01:10:39.798Z Has data issue: false hasContentIssue false

On collective complete integrability according to the method of Thimm

Published online by Cambridge University Press:  19 September 2008

Victor Guillemin
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, U.S.A.
Shlomo Sternberg
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts, 02138, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a Lie group acting in Hamiltonian fashion on a symplectic manifold M with moment map Φ:Mg*. A function of the form ƒ∘Φ where ƒ is a function on g* is called ‘collective’. We obtain necessary conditions on the G action for there to exist enough Poisson commuting functions on g* so that the corresponding collective functions on M form a completely integrable system. For the case G = O(n) or U(n) these conditions are sufficient. This explains Thimm's proof [17] of the complete integrability of the geodesic flow on the real and complex grassmanians. We also discuss related questions in the geometry of the moment map.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

[1]Tkhi, Dao Chong. Integrability of Euler's equations on homogeneous symplectic manifolds. Math. Sb. 106 No. 2 (1978), 154161.Google Scholar
[2]Duflo, M. & Vergne, M.. Une propriete de la representation coadjointe d'une algebre de Lie. CRAS Paris Set. A-B 268 (1969) A583–585.Google Scholar
[3]Guillemin, V. & Sternberg, S.. The moment map and collective motion. Ann. of Phys. 127 (1980), 220253.Google Scholar
[4]Guillemin, V. & Sternberg, S.. Convexity properties of the moment map. Invenliones Math. 67 (1982) 491513.CrossRefGoogle Scholar
[5]Guillemin, V. & Sternberg, . Moments and reductions. Conference on differential geometric methods in theoretical physics. World Scientific (Singapore) (1983) 87102.Google Scholar
[6]Heckmann, G.. Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups. To appear.Google Scholar
[7]Jacobi, C.. Vorlesungen uber Mechanik. Gesammelte Abhandlungen.Google Scholar
[8]Kazhdan, D., Kostant, B. & Sternberg, S.. Hamiltonian group actions and dynamical systems of Calogero type. Comm. Pure and App. Math. 31 (1978), 481507.CrossRefGoogle Scholar
[9]Kramer, M.. Sphärische Untergruppen in kompakten zusamenhängenden Liegruppen. Compositio Mathematica 38 (1979), 129153.Google Scholar
[10]Marsden, J. & Weinstein, A.. Reduction of symplectic manifolds with symmetry. Reports on Math Phys. 5 (1974), 121130.Google Scholar
[11]Mikitiuk, I. V.. In Dauk Akad. Nauk SSSR 265 (1982) 10741078.Google Scholar
[12]Mishchenko, A. S.. Integration of the geodesic flows on symmetric spaces. Matem. Zametki 31: 2 (1982), 257262.Google Scholar
[13]Mishchenko, A. S. & Fomenko, A. T.. Euler equations on finite dimensional Lie groups, Itvestia 12 (1978).Google Scholar
[14]Moser, J.. Various aspects of integrable Hamiltonian systems. Proj. Math 8 Birkhauser, (1980).CrossRefGoogle Scholar
[15]Planchart, A.. Thesis, Berkeley, 1982.Google Scholar
[16]Sternberg, S.. Symplectic Homogeneous spaces. Trans. Amer. Math. Soc. 212 (1975) 113130.CrossRefGoogle Scholar
[17]Thimm, A.. Integrable geodesic flows on homogeneous spaces. Ergod. Th. & Dynam. Sys. 1 (1981), 495517.CrossRefGoogle Scholar