Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:48:18.390Z Has data issue: false hasContentIssue false

On ${\bar d}$-approachability, entropy density and $\mathscr {B}$-free shifts

Published online by Cambridge University Press:  15 February 2022

JAKUB KONIECZNY*
Affiliation:
Camille Jordan Institute, Claude Bernard University Lyon 1, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
MICHAL KUPSA
Affiliation:
The Czech Academy of Sciences, Institute of Information Theory and Automation, CZ-18208 Prague 8, Czech Republic (e-mail: [email protected])
DOMINIK KWIETNIAK
Affiliation:
Faculty of Mathematics and Computer Science, Jagiellonian University in Krakow, ul. Łojasiewicza 6, 30-348 Kraków, Poland (e-mail: [email protected])

Abstract

We study approximation schemes for shift spaces over a finite alphabet using (pseudo)metrics connected to Ornstein’s ${\bar d}$ metric. This leads to a class of shift spaces we call ${\bar d}$ -approachable. A shift space is ${\bar d}$ -approachable when its canonical sequence of Markov approximations converges to it also in the ${\bar d}$ sense. We give a topological characterization of chain-mixing ${\bar d}$ -approachable shift spaces. As an application we provide a new criterion for entropy density of ergodic measures. Entropy density of a shift space means that every invariant measure $\mu $ of such a shift space is the weak $^*$ limit of a sequence $\mu _n$ of ergodic measures with the corresponding sequence of entropies $h(\mu _n)$ converging to $h(\mu )$ . We prove ergodic measures are entropy-dense for every shift space that can be approximated in the ${\bar d}$ pseudometric by a sequence of transitive sofic shifts. This criterion can be applied to many examples that were beyond the reach of previously known techniques including hereditary $\mathscr {B}$ -free shifts and some minimal or proximal systems. The class of symbolic dynamical systems covered by our results includes also shift spaces where entropy density was established previously using the (almost) specification property.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avdeeva, M.. Limit theorems for B-free integers and the Moebius function. PhD Thesis, Princeton University, 2016.Google Scholar
Avdeeva, M., Cellarosi, F. and Sinai, Y. G.. Ergodic and statistical properties of $\mathcal{B}$ -free numbers. Teor. Veroyatn. Primen. 61(4) (2016), 805829; Engl. Transl. Theory Probab. Appl. 61(4) (2017), 569–589.CrossRefGoogle Scholar
Baake, M. and Huck, C.. Ergodic properties of visible lattice points. Proc. Steklov Inst. Math. 288(1) (2015), 165188.CrossRefGoogle Scholar
Bergelson, V., Kułaga-Przymus, J., Lemańczyk, M. and Richter, F. K.. Rationally almost periodic sequences, polynomial multiple recurrence and symbolic dynamics. Ergod. Th. & Dynam. Sys. 39(9) (2019), 23322383.CrossRefGoogle Scholar
Bergelson, V. and Ruzsa, I.. Squarefree numbers, IP sets and ergodic theory. Paul Erdős and His Mathematics, I (Budapest, 1999) (Bolyai Society Mathematical Studies, 11). Eds. Halasz, G., Lovasz, L., Simonovits, M. and Sós, V. T.. Janos Bolyai Mathematical Society, Budapest, 2002, pp. 147160.Google Scholar
Blank, M. L.. Metric properties of $\varepsilon$ -trajectories of dynamical systems with stochastic behaviour. Ergod. Th. & Dynam. Sys. 8(3) (1988), 365378.CrossRefGoogle Scholar
Cellarosi, F. and Sinai, Y. G.. Ergodic properties of square-free numbers. J. Eur. Math. Soc. (JEMS) 15 (2013), 13431374.CrossRefGoogle Scholar
Cellarosi, F. and Vinogradov, I.. Ergodic properties of $k$ -free integers in number fields. J. Mod. Dyn. 7(3) (2013), 461488.CrossRefGoogle Scholar
Chazottes, J.-R., Ramirez, L. and Ugalde, E.. Finite type approximations of Gibbs measures on sofic subshifts. Nonlinearity 18(1) (2005), 445463.CrossRefGoogle Scholar
Climenhaga, V. and Thompson, D.. Intrinsic ergodicity beyond specification: $\beta$ -shifts, $S$ -gap shifts, and their factors. Israel J. Math. 192(2) (2012), 785817.CrossRefGoogle Scholar
Climenhaga, V., Thompson, D. and Yamamoto, K.. Large deviations for systems with non-uniform structure. Trans. Amer. Math. Soc. 369(6) (2017), 41674192.CrossRefGoogle Scholar
Comman, H.. Strengthened large deviations for rational maps and full shifts, with unified proof. Nonlinearity 22(6) (2009), 14131429.CrossRefGoogle Scholar
Comman, H.. Criteria for the density of the graph of the entropy map restricted to ergodic states. Ergod. Th. & Dynam. Sys. 37(3) (2017), 758785.CrossRefGoogle Scholar
Davenport, H. and Erdős, P.. On sequences of positive integers. Acta Arith. 2 (1936), 147151.CrossRefGoogle Scholar
Davenport, H. and Erdős, P.. On sequences of positive integers. J. Indian Math. Soc. (N.S.) 15 (1951), 1924.Google Scholar
Deka, K.. Some properties of regular and rational sets. Acta Arith. 182(3) (2018), 279284.CrossRefGoogle Scholar
Denker, M., Grillenberger, C. and Sigmund, K.. Ergodic Theory on Compact Spaces (Lecture Notes in Mathematics, 527). Springer-Verlag, Berlin, 1976.CrossRefGoogle Scholar
Dymek, A.. Proximality of multidimensional $\mathcal{B}$ -free systems. Discrete Contin. Dyn. Syst. 41(8) (2021), 37093724.CrossRefGoogle Scholar
Dymek, A., Kasjan, S., Kułaga-Przymus, J. and Lemańczyk, M.. $\mathcal{B}$ -free sets and dynamics. Trans. Amer. Math. Soc. 370(8) (2018), 54255489.CrossRefGoogle Scholar
Eizenberg, A., Kifer, Y. and Weiss, B.. Large deviations for ${\mathbb{Z}}^d$ -actions. Comm. Math. Phys. 164(3) (1994), 433454.CrossRefGoogle Scholar
El Abdalaoui, E. H., Lemańczyk, M. and de la Rue, T.. A dynamical point of view on the set of $\mathcal{B}$ -free integers. Int. Math. Res. Not. IMRN 2015(16) (2015), 72587286.CrossRefGoogle Scholar
Föllmer, H. and Orey, S.. Large deviations for the empirical field of a Gibbs measure. Ann. Probab. 16(3) (1988), 961977.CrossRefGoogle Scholar
Friedman, N. A. and Ornstein, D. S.. On isomorphism of weak Bernoulli transformations. Adv. Math. 5 (1970), pp. 365394.CrossRefGoogle Scholar
Gelfert, K. and Kwietniak, D.. On density of ergodic measures and generic points. Ergod. Th. & Dynam. Sys. 38(5) (2018), 17451767.CrossRefGoogle Scholar
Illanes, A. and Nadler, S. B. Hyperspaces: Fundamentals and Recent Advances (Monographs and Textbooks in Pure and Applied Mathematics, 216). Marcel Dekker, New York, 1999.Google Scholar
Jung, U.. On the existence of open and bi-continuing codes. Trans. Amer. Math. Soc. 363 (2011), 13991417.CrossRefGoogle Scholar
Kasjan, S., Keller, G. and Lemańczyk, M.. Dynamics of $\mathcal{B}$ -free sets: a view through the window. Int. Math. Res. Not. IMRN 2019(9) (2019), 26902734.CrossRefGoogle Scholar
Keller, G.. Tautness for sets of multiples and applications to $\mathcal{B}$ -free dynamics. Studia Math. 247(2) (2019), 205216.CrossRefGoogle Scholar
Keller, G.. Generalized heredity in $\mathcal{B}$ -free systems. Stoch. Dyn. 21(3) (2021), Paper no. 2140008.CrossRefGoogle Scholar
Konieczny, J., Kupsa, M. and Kwietniak, D.. Minimal and proximal examples of ${\bar{d}}$ -stable and ${\bar{d}}$ -approachable shift spaces, in preparation.Google Scholar
Kułaga-Przymus, J., Lemańczyk, M. and Weiss, B.. On invariant measures for $\mathcal{B}$ -free systems. Proc. Lond. Math. Soc. (3) 110 (2015), 14351474.CrossRefGoogle Scholar
Kułaga-Przymus, J., Lemańczyk, M. and Weiss, B.. Hereditary subshifts whose simplex of invariant measures is Poulsen. Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby (Contemporary Mathematics, 678). Eds. Auslander, J., Johnson, A. and Silva, C. E.. American Mathematical Society, Providence, RI, 2016, pp. 245253.CrossRefGoogle Scholar
Kułaga-Przymus, J. and Lemańczyk, M. D.. Hereditary subshifts whose measure of maximal entropy does not have the Gibbs property. Colloq. Math. 166(1) (2021), 107127.CrossRefGoogle Scholar
Kulczycki, M., Kwietniak, D. and Li, J.. Entropy of subordinate shift spaces. Amer. Math. Monthly 125(2) (2018), 141148.CrossRefGoogle Scholar
Kulczycki, M., Kwietniak, D. and Oprocha, P.. On almost specification and average shadowing properties. Fund. Math. 224(3) (2014), 241278.CrossRefGoogle Scholar
Kůrka, P.. Topological and Symbolic Dynamics (Cours Spécialisés [Specialized Courses], 11). Société Mathématique de France, Paris, 2003.Google Scholar
Kwietniak, D.. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts. Discrete Contin. Dyn. Syst. 33(6) (2013), 24512467.CrossRefGoogle Scholar
Kwietniak, D., Łącka, M. and Oprocha, P.. A panorama of specification-like properties and their consequences. Dynamics and Numbers (Contemporary Mathematics, 669). Eds. Kolyada, S., Möller, M., Moree, P. and Ward, Th.. American Mathematical Society, Providence, RI, 2016, pp. 155186.CrossRefGoogle Scholar
Kwietniak, D., Łącka, M. and Oprocha, P.. Generic points for dynamical systems with average shadowing. Monatsh. Math. 183(4) (2017), 625648.CrossRefGoogle Scholar
Kwietniak, D., Oprocha, P. and Rams, M.. On entropy of dynamical systems with almost specification. Israel J. Math. 213(1) (2016), 475503.CrossRefGoogle Scholar
Li, J. and Oprocha, P.. Properties of invariant measures in dynamical systems with the shadowing property. Ergod. Th. & Dynam. Sys. 38(6) (2018), 22572294.CrossRefGoogle Scholar
Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.Google Scholar
Orey, S.. Large deviations in ergodic theory. Seminar on Stochastic Processes, 1984 (Evanston, Illinois, 1984) (Progress in Probability and Statistics, 9). Eds. Çinlar, E., Chung, K. L. and Getoor, R. K.. Birkhäuser Boston, Boston, MA, 1986, pp. 195249.CrossRefGoogle Scholar
Ornstein, D. S.. Ergodic Theory, Randomness, and Dynamical Systems (Yale Mathematical Monographs, 5). Yale University Press, New Haven, CT, 1974.Google Scholar
Parthasarathy, K. R.. On the category of ergodic measures. Illinois J. Math. 5 (1961), 648656.CrossRefGoogle Scholar
Pavlov, R.. On intrinsic ergodicity and weakenings of the specification property. Adv. Math. 295 (2016), 250270.CrossRefGoogle Scholar
Peckner, R.. Uniqueness of the measure of maximal entropy for the squarefree flow. Israel J. Math. 210(1) (2015), 335357.CrossRefGoogle Scholar
Pfister, C.-E. and Sullivan, W. G.. Large deviations estimates for dynamical systems without the specification property. Applications to the $\beta$ -shifts. Nonlinearity 18(1) (2005), 237261.CrossRefGoogle Scholar
Pfister, C.-E. and Sullivan, W. G.. On the topological entropy of saturated sets. Ergod. Th. & Dynam. Sys. 27(3) (2007), 929956.CrossRefGoogle Scholar
Pfister, C.-E. and Sullivan, W. G.. Weak Gibbs measures and large deviations. Nonlinearity 31(1) (2018), 4953.CrossRefGoogle Scholar
Rudolph, D.. Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces. Clarendon Press, Oxford, 1990.Google Scholar
Sarnak, P.. Three lectures on the Möbius function randomness and dynamics (Lecture 1). http:// publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf.Google Scholar
Schmeling, J.. Symbolic dynamics for $\beta$ -shifts and self-normal numbers. Ergod. Th. & Dynam. Sys. 17(3) (1997), 675694.CrossRefGoogle Scholar
Sigmund, K.. Generic properties of invariant measures for Axiom $A$ -diffeomorphisms. Invent. Math. 11 (1970), 99109.CrossRefGoogle Scholar
Thompson, D.. Irregular sets, the $\beta$ -transformation and the almost specification property. Trans. Amer. Math. Soc. 364(10) (2012), 53955414.CrossRefGoogle Scholar
Thompson, D.. A ‘horseshoe’ theorem in symbolic dynamics via single sequence techniques, unpublished manuscript, 2017.Google Scholar
Ville, J.. Étude critique de la notion de collectif. NUMDAM, 1939, 116pp (in French).Google Scholar
Wu, X., Oprocha, P. and Chen, G.. On various definitions of shadowing with average error in tracing. Nonlinearity 29(7) (2016), 19421972.CrossRefGoogle Scholar