Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T17:06:30.574Z Has data issue: false hasContentIssue false

Non-wandering sets of the powers of maps of the interval

Published online by Cambridge University Press:  19 September 2008

Ethan M. Coven*
Affiliation:
Department of Mathematics, Wesleyan University, Middletown, Conn.
Zbigniew Nitecki
Affiliation:
Department of Mathematics, Tufts University, Medford, Mass.
*
Ethan M. Coven, Department of Mathematics, Wesleyan University, Middletown, Conn. 06457, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that, for maps of the interval, the non-wandering set of the map coincides with the non-wandering set of each of its odd powers, while the nonwandering set of any of its even powers can be strictly smaller.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

References

REFERENCES

[1]Auslander, J. & Siebert, P.. Prolongations and stability in dynamical systems. Ann. Inst. Fourier (Grenoble) 14 (1964), 237267.Google Scholar
[2]Bhatia, N. P. & Szegö, G. P.. Dynamical Systems: Stability Theory and Applications. Springer Lecture Notes in Math. no. 35. Springer: Berlin, 1967.CrossRefGoogle Scholar
[3]Block, L.. Homoclinic points of mappings of the interval. Proc. Amer. Math. Soc. 72 (1978), 576580.CrossRefGoogle Scholar
[4]Coven, E. M. & Hedlund, G. A.. for maps of the interval. Proc. Amer. Math. Soc. 79 (1980), 316318.Google Scholar
[5]Denjoy, A.. Sur les courbes définies par les équations différentielles à la surface du tore. J. Math. Pures Appl. 11 (1932), 333375.Google Scholar
[6]Erdös, P. & Stone, A. H.. Some remarks about almost periodic transformations. Bull. Amer. Math. Soc. 51 (1945), 126130.CrossRefGoogle Scholar
[7]Gottschalk, W. H.. Powers of homeomorphisms with almost periodic properties. Bull. Amer. Math. Soc. 50 (1944), 222227.CrossRefGoogle Scholar
[8]Guckenheimer, J.. Sensitive dependence to initial conditions for one dimensional maps. Comm. Math. Phys. 70 (1979), 133160.CrossRefGoogle Scholar
[9]Misiurewicz, M.. Absolutely continuous measures for certain maps of the interval. I.H.E.S. preprint, 1979.Google Scholar
[10]Nitecki, Z.. Differentiable Dynamics: An Introduction to the Orbit Structure of Diffeomorphisms. M.I.T. Press: Cambridge, 1971.Google Scholar
[11]Nitecki, Z.. Periodic and limit orbits and the depth of the center for piecewise monotone interval maps. Proc. Amer. Math. Soc. 80 (1980), 511514.CrossRefGoogle Scholar
[12]Sawada, K.. On the iteration of diffeomorphisms without C° Ω-explosions. Proc. Amer. Math. Soc. 79 (1980), 110112.Google Scholar
[13]Štefan, P.. A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line. Comm. Math. Phys. 54 (1977), 237248.CrossRefGoogle Scholar
[14]Ura, T.. Sur les courbes definies par les équations différentielles dans l'espace à m dimensions. Ann. Sci. Ecole Norm. Sup. 70 (1953), 287360.CrossRefGoogle Scholar
[15]Young, L.-S.. A closing lemma on the interval. Invent. Math. 54 (1979), 179187.CrossRefGoogle Scholar