Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T01:12:53.622Z Has data issue: false hasContentIssue false

Non-smooth saddle-node bifurcations II: Dimensions of strange attractors

Published online by Cambridge University Press:  04 May 2017

G. FUHRMANN
Affiliation:
Department of Mathematics, TU Dresden, Germany email [email protected], [email protected]
M. GRÖGER
Affiliation:
Department of Mathematics, Universität Bremen, Germany email [email protected]
T. JÄGER
Affiliation:
Department of Mathematics, TU Dresden, Germany email [email protected], [email protected]

Abstract

We study the geometric and topological properties of strange non-chaotic attractors created in non-smooth saddle-node bifurcations of quasiperiodically forced interval maps. By interpreting the attractors as limit objects of the iterates of a continuous curve and controlling the geometry of the latter, we determine their Hausdorff and box-counting dimension and show that these take distinct values. Moreover, the same approach allows us to describe the topological structure of the attractors and to prove their minimality.

Type
Original Article
Copyright
© Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrosio, L. and Kirchheim, B.. Rectifiable sets in metric and Banach spaces. Math. Ann. 318(3) (2000), 527555.Google Scholar
Anagnostopoulou, V. and Jäger, T.. Nonautonomous saddle-node bifurcations: random and deterministic forcing. J. Differential Equations 253(2) (2012), 379399.Google Scholar
Bjerklöv, K.. Dynamics of the quasiperiodic Schrödinger cocycle at the lowest energy in the spectrum. Comm. Math. Phys. 272 (2005), 397442.Google Scholar
Bjerklöv, K.. Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations. Ergod. Th. & Dynam. Sys. 25 (2005), 10151045.Google Scholar
Bjerklöv, K. SNA’s in the quasi-periodic quadratic family. Comm. Math. Phys. 286(1) (2009), 137161.Google Scholar
Bowen, R.. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153 (1971), 401414.Google Scholar
Ding, M., Grebogi, C. and Ott, E.. Dimensions of strange nonchaotic attractors. Phys. Lett. A 137(4–5) (1989), 167172.Google Scholar
Ditto, W. L., Rauseo, S., Cawley, R., Grebogi, C., Hsu, G.-H., Kostelich, E., Ott, E., Savage, H. T., Segnan, R., Spano, M. L. and Yorke, J. A.. Experimental observation of crisis-induced intermittency and its critical exponents. Phys. Rev. Lett. 63(9) (1989), 923926.Google Scholar
Ditto, W. L., Spano, M. L., Savage, H. T., Heagy, S. N., Rauseo, J. and Ott, E.. Experimental observation of a strange nonchaotic attractor. Phys. Rev. Lett. 65(5) (1990), 533536.Google Scholar
Feudel, U., Kurths, J. and Pikovsky, A.. Strange nonchaotic attractor in a quasiperiodically forced circle map. Physica D 88 (1995), 176186.Google Scholar
Fuhrmann, G.. Strange attractors of forced one-dimensional systems: existence and geometry. PhD dissertation, Friedrich-Schiller-Universität Jena, 2015. https://wwwdb-thueringende/servlets/MCRFileNodeServlet/dbt_derivate_00032462/Diss/FUHRMANNpdf.Google Scholar
Fuhrmann, G.. Non-smooth saddle-node bifurcations I: Existence of an SNA. Ergod. Th. & Dynam. Sys. 36(4) (2016), 11301155.Google Scholar
Glendinning, P.. Global attractors of pinched skew products. Dyn. Syst. 17 (2002), 287294.Google Scholar
Glendinning, P., Jäger, T. and Stark, J.. Strangely dispersed minimal sets in the quasiperiodically forced Arnold circle map. Nonlinearity 22(4) (2009), 835854.Google Scholar
Grebogi, C., Ott, E., Pelikan, S. and Yorke, J. A.. Strange attractors that are not chaotic. Physica D 13 (1984), 261268.Google Scholar
Gröger, M. and Jäger, T.. Dimensions of attractors in pinched skew products. Comm. Math. Phys. 320(1) (2013), 101119.Google Scholar
Heagy, J. F. and Hammel, S. M.. The birth of strange nonchaotic attractors. Physica D 70 (1994), 140153.Google Scholar
Herman, M.. Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58 (1983), 453502.Google Scholar
Howroyd, J. D.. On Hausdorff and packing dimension of product spaces. Math. Proc. Cambridge Philos. Soc. 119(4) (1996), 715727.Google Scholar
Jäger, T.. Quasiperiodically forced interval maps with negative Schwarzian derivative. Nonlinearity 16(4) (2003), 12391255.Google Scholar
Jäger, T.. On the structure of strange nonchaotic attractors in pinched skew products. Ergod. Th. & Dynam. Sys. 27 (2007), 493510.Google Scholar
Jäger, T.. Strange non-chaotic attractors in quasiperiodically forced circle maps. Comm. Math. Phys. 289(1) (2009), 253289.Google Scholar
Keller, G.. A note on strange nonchaotic attractors. Fund. Math. 151(2) (1996), 139148.Google Scholar
Milnor, J.. On the concept of attractor. Comm. Math. Phys. 99 (1985), 177195.Google Scholar
Núñez, C. and Obaya, R.. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete Contin. Dyn. Syst. B 9 (2008), 701730.Google Scholar
Pesin, Ya. B.. On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions. J. Stat. Phys. 71(3–4) (1993), 529547.Google Scholar
Pesin, Ya. B.. Dimension Theory in Dynamical Systems (Chicago Lectures in Mathematics) . University of Chicago Press, Chicago, 1997.Google Scholar
Prasad, A., Negi, S. S. and Ramaswamy, R.. Strange nonchaotic attractors. Internat. J. Bifur. Chaos 11(2) (2001), 291309.Google Scholar
Romeiras, F. J., Bondeson, A., Ott, E., Antonsen, T. M. Jr and Grebogi, C.. Quasiperiodically forced dynamical systems with strange nonchaotic attractors. Physica D 26 (1987), 277294.Google Scholar
Stark, J.. Transitive sets for quasi-periodically forced monotone maps. Dyn. Syst. 18(4) (2003), 351364.Google Scholar
Stark, J. and Sturman, R.. Semi-uniform ergodic theorems and applications to forced systems. Nonlinearity 13(1) (2000), 113143.Google Scholar
Young, L. S.. Dimension, entropy and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 2(1) (1982), 109124.Google Scholar
Young, L.-S.. Lyapunov exponents for some quasi-periodic cocycles. Ergod. Th. & Dynam. Sys. 17 (1997), 483504.Google Scholar
Zindulka, O.. Hentschel–Procaccia spectra in separable metric spaces. Real Analysis Exchange (Summer Symposium in Real Analysis XXVI) , 2002, pp. 115119 . See also unpublished note on http://mat.fsv.cvut.cz/zindulka/.Google Scholar