Article contents
Non-intersecting splitting σ-algebras in a non-Bernoulli transformation
Published online by Cambridge University Press: 28 April 2011
Abstract
Given a measure-preserving transformation T on a Lebesgue σ-algebra, a complete T-invariant sub-σ-algebra is said to split if there is another complete T-invariant sub-σ-algebra on which T is Bernoulli which is completely independent of the given sub-σ-algebra and such that the two sub-σ-algebras together generate the entire σ-algebra. It is easily shown that two splitting sub-σ-algebras with nothing in common imply T to be K. Here it is shown that T does not have to be Bernoulli by exhibiting two such non-intersecting σ-algebras for the T,T−1 transformation, negatively answering a question posed by Thouvenot in 1975.
- Type
- Research Article
- Information
- Ergodic Theory and Dynamical Systems , Volume 32 , Issue 2: Daniel J. Rudolph – in Memoriam , April 2012 , pp. 691 - 705
- Copyright
- Copyright © Cambridge University Press 2011
References
- 2
- Cited by