Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T05:46:41.901Z Has data issue: false hasContentIssue false

Multipliers of periodic orbits in spaces of rational maps

Published online by Cambridge University Press:  11 March 2010

GENADI LEVIN*
Affiliation:
Institute of Mathematics, The Hebrew University of Jerusalem, Israel (email: [email protected])

Abstract

Given a polynomial or a rational function f we include it in a space of maps. We introduce local coordinates in this space, which are essentially the set of critical values of the map. Then we consider an arbitrary periodic orbit of f with multiplier ρ⁄=1 as a function of the local coordinates, and establish a simple connection between the dynamical plane of f and the function ρ in the space associated to f. The proof is based on the theory of quasiconformal deformations of rational maps. As a corollary, we show that multipliers of non-repelling periodic orbits are also local coordinates in the space.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ahlfors, L.. Lectures on Quasiconformal Mappings. Van Nostrand, Princeton, NJ, 1966.Google Scholar
[2]Bers, L. and Royden, H. L.. Holomorphic families of injections. Acta Math. 157 (1986), 259286.CrossRefGoogle Scholar
[3]Carleson, L. and Gamelin, T.. Complex Dynamics. Springer, Berlin, 1993.CrossRefGoogle Scholar
[4]Douady, A. and Hubbard, J. H.. Iteration des polynomes quadratiques complexes. C. R. Acad. Sci., Paris, Sér. I 294 (1982), 123126.Google Scholar
[5]Douady, A. and Hubbard, J. H.. Etude Dynamique des Polynomes Complexes (Publ. Math. Orsay). Université Paris-Sud 11, Orsay, 84–02 (1984), 85–04 (1985).Google Scholar
[6]Douady, A. and Hubbard, J. H.. A proof of Thurston’s topological characterization of rational maps. Acta Math. 171(2) (1993), 263297.CrossRefGoogle Scholar
[7]Eremenko, A., Levin, G. and Sodin, M.. On the distribution of zeros of a Ruelle zeta-function. Comm. Math. Phys. 159 (1994), 433441.CrossRefGoogle Scholar
[8]Eremenko, A.. A Markov-type inequality for arbitrary plane continua. Proc. Amer. Math. Soc. 135(5) (2007), 15051510.CrossRefGoogle Scholar
[9]Epstein, A.. Infinitesimal Thurston rigidity and the Fatou–Shishikura inequality. Stony Brook IMS Preprint 1999/1, 1999.Google Scholar
[10]Epstein, A.. Transversality in holomorphic dynamics. Slides of a Talk at the Conference ‘Conformal Structures and Dynamics’. University of Warwick, 30 March–3 April, 2009.Google Scholar
[11]Levin, G. M.. Polynomial Julia sets and Pade’s approximations. Proceedings of XIII Workshop on Operator’s Theory in Functional Spaces (Kyubishev, 6–13 October, 1988). Kyubishev State University, Kyubishev, 1988, pp. 113114 (in Russian).Google Scholar
[12]Levin, G. M.. Polynomial Julia sets and Pade’s approximations. Unpublished manuscript. 1988.Google Scholar
[13]Levin, G.. On explicit connections between dynamical and parameter spaces. J. Anal. Math. 91 (2003), 297327.CrossRefGoogle Scholar
[14]Levin, G.. Multipliers of periodic orbits of quadratic polynomials and the parameter plane. Israel J. Math. 170 (2009), 285315.CrossRefGoogle Scholar
[15]Levin, G.. Rigidity and non local connectivity of Julia sets of some quadratic polynomials. ArXiv 0710.4406, 2007.Google Scholar
[16]Levin, G.. Quasiconformal variation of multipliers. Contemp. Math. 469 (2009), American Mathematical Society, Providence, RI, 135–139. Appendix to H. Bruin, M. Jakobson. New examples of topologically equivalent S-unimodal maps with different metric properties. Geometric and Probabilistic Structures in Dynamics. Workshop in Honor of Michael Brin on the occasion of his 60th birthday (College Park, MA, 15–18 March, 2008), University of Maryland.Google Scholar
[17]Levin, G.. On an analytic approach to the Fatou conjecture. Fund. Math. 171 (2002), 177196.CrossRefGoogle Scholar
[18]Levin, G.. On Mayer’s conjecture and zeros of entire functions. Ergod. Th. & Dynam. Sys. 14 (1994), 565574.CrossRefGoogle Scholar
[19]Levin, G., Sodin, M. and Yuditski, P.. Ruelle operators with rational weights for Julia sets. J. Anal. Math. 63 (1994), 303331.CrossRefGoogle Scholar
[20]Levin, G., Sodin, M. and Yuditski, P.. A Ruelle operator for a real Julia set. Comm. Math. Phys. 141 (1991), 119132.CrossRefGoogle Scholar
[21]Liu, F. and Osserman, B.. The irreducibility of certain pure-cycle Hurwitz spaces. Amer. J. Math. 130(6) 16871708.CrossRefGoogle Scholar
[22]Mane, R., Sad, P. and Sullivan, D.. On the dynamics of rational maps. Ann. Sci. Éc. Norm. Supér. (4) 16 (1983), 193217.CrossRefGoogle Scholar
[23]Milnor, J.. Dynamics in One Complex Variable, 3rd edn(Annals of Mathematics Studies, 160). Princeton University Press, Princeton, NJ, 2006.Google Scholar
[24]Milnor, J.. Hyperbolic Components in Spaces of Polynomial Maps. Stony Brook Preprint, 1992.Google Scholar
[25]Milnor, J.. Geometry and dynamics of quadratic rational maps. Experiment. Math. 2 (1993), 3783.CrossRefGoogle Scholar
[26]Makienko, P.. Remarks on Ruelle operator and invariant line field problem. I. Preprint, 2000, FIM, Zurich.Google Scholar
[27]Makienko, P.. Remarks on Ruelle operator and invariant line field problem. II. Ergod. Th. & Dynam. Sys. 25(5) (2005), 15611581.CrossRefGoogle Scholar
[28]Makienko, P. and Sienra, G.. Poincare series and instability of exponential maps. Bol. Soc. Mat. Mexicana (3) 12(2) (2006), 213228.Google Scholar
[29]McMullen, C.. Complex Dynamics and Renormalization (Annals of Mathematics Studies, 135). Princeton University Press, Princton, NJ, 1994.Google Scholar
[30]McMullen, C. and Sullivan, D.. Quasiconformal homeomorphisms and dynamics III. The Teichmuller space of a holomorphic dynamical system. Adv. Math. 135 (1998), 351395.CrossRefGoogle Scholar
[31]Rees, M.. Components of degree two hyperbolic rational maps. Invent. Math. 100 (1990), 357382.CrossRefGoogle Scholar
[32]Rees, M.. A partial description of parameter space of rational maps of degree two. Part I. Acta Math. 168 (1992), 1187; Part II: Proc. London Math. Soc. (3) 70 (1995)(3), 644–690.CrossRefGoogle Scholar
[33]Rees, M.. Views of parameter space: Topograther and Resident. Asterisque 228 (2003).Google Scholar
[34]Shishikura, M.. On the quasiconformal surgery of rational functions. Ann. Sci. Éc. Norm. Supér. (4) 20 (1987), 129.CrossRefGoogle Scholar
[35]Sodin, M. and Yuditski, P.. The limit-periodic finite-difference operator on 2(Z) associated with iterations of quadratic polynomials. J. Stat. Phys. 60 (1990), 863873.CrossRefGoogle Scholar
[36]Tsujii, M.. A simple proof for monotonicity of entropy in the quadratic family. Ergod. Th. & Dynam Sys. 20(3) (2000), 925933.CrossRefGoogle Scholar
[37]Urbanski, M. and Zdunik, A.. Instability of exponential Collet–Eckmann maps. Israel J. Math. 161 (2007), 347371.CrossRefGoogle Scholar
[38]Whitney, H.. Complex Analytic Varieties. Addison-Wesley, Reading, MA, 1972.Google Scholar