Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T04:24:01.759Z Has data issue: false hasContentIssue false

Multifractal analysis for disintegrations of Gibbs measures and conditional Birkhoff averages

Published online by Cambridge University Press:  01 June 2009

DE-JUN FENG
Affiliation:
Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China (email: [email protected])
LIN SHU
Affiliation:
School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China (email: [email protected])

Abstract

The paper is devoted to the study of the multifractal structure of disintegrations of Gibbs measures and conditional (random) Birkhoff averages. Our approach is based on the relativized thermodynamic formalism, convex analysis and, especially, the delicate constructions of Moran-like subsets of level sets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arbeiter, M. and Patzschke, N.. Random self-similar multifractals. Math. Nachr. 181 (1996), 542.CrossRefGoogle Scholar
[2]Abramov, L. M. and Rohlin, V. A.. Entropy of a skew product of mappings with invariant measure. Vestn. Leningrad. Univ. 17 (1962), 513.Google Scholar
[3]Barański, K.. Hausdorff dimension of the limit sets of some planar geometric constructions. Adv. Math. 210 (2007), 215245.CrossRefGoogle Scholar
[4]Barral, J.. Continuity of the multifractal spectrum of a random statistically self-similar measure. J. Theoret. Probab. 13 (2000), 10271060.CrossRefGoogle Scholar
[5]Barral, J., Coppens, M. O. and Mandelbrot, B. B.. Multiperiodic multifractal martingale measures. J. Math. Pures Appl. 82 (2003), 15551589.CrossRefGoogle Scholar
[6]Barral, J. and Mensi, M.. Gibbs measures on self-affine Sierpinski carpets and their singularity spectrum. Ergod. Th. & Dynam. Sys. 27 (2007), 14191443.CrossRefGoogle Scholar
[7]Barreira, L. and Saussol, B.. Variational principles and mixed multifractal spectra. Trans. Amer. Math. Soc. 353 (2001), 39193944.CrossRefGoogle Scholar
[8]Barreira, L., Saussol, B. and Schmeling, J.. Higher-dimensional multifractal analysis. J. Math. Pures Appl. 81 (2002), 6791.CrossRefGoogle Scholar
[9]Barreira, L. and Schmeling, J.. Sets of non-typical’ points have full topological entropy and full Hausdorff dimension. Israel J. Math. 116 (2000), 2970.CrossRefGoogle Scholar
[10]Bogenschütz, T.. Entropy, pressure, and a variational principle for random dynamical systems. Random Comput. Dynam. 1 (1992/93), 99–116.Google Scholar
[11]Bogenschütz, T. and Gundlach, V.. Ruelle’s transfer operator for random subshifts of finite type. Ergodic Th. & Dynam. Sys. 15 (1995), 413447.CrossRefGoogle Scholar
[12]Bowen, R.. Topological entropy for non-compact sets. Trans. Amer. Math. Soc. 49 (1973), 125136.CrossRefGoogle Scholar
[13]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer, Berlin, 1975.CrossRefGoogle Scholar
[14]Brown, G., Michon, G. and Peyrière, J.. On the multifractal analysis of measures. J. Stat. Phys. 66 (1992), 775790.CrossRefGoogle Scholar
[15]Chen, E. C., Küpper, T. and Shu, L.. Topological entropy for divergence points. Ergod. Th. & Dynam. Sys. 25 (2005), 11731208.Google Scholar
[16]Choquet, G.. Le théorème de représentation intégrale dans les ensembles convexes compacts. Ann. Inst. Fourier Grenoble 10 (1960), 333344.CrossRefGoogle Scholar
[17]Crauel, H.. Random Probability Measures on Polish Spaces (Stochastics Monographs, 11). Taylor & Francis, London, 2002.CrossRefGoogle Scholar
[18]Denker, M. and Gordin, M.. Gibbs measures for fibred systems. Adv. Math. 148 (1999), 161192.CrossRefGoogle Scholar
[19]Falconer, K. J.. Fractal geometry. Mathematical Foundations and Applications, 2nd edn. John Wiley & Sons, NJ, 2003.Google Scholar
[20]Fan, A. H.. Multifractal analysis of infinite products. J. Stat. Phys. 86 (1997), 13131336.Google Scholar
[21]Fan, A. H. and Feng, D. J.. On the distribution of long-term time averages on symbolic space. J. Stat. Phys. 99 (2000), 813856.CrossRefGoogle Scholar
[22]Fan, A. H., Feng, D. J. and Wu, J.. Recurrence, dimension and entropy. J. Lond. Math. Soc. 64 (2001), 229244.CrossRefGoogle Scholar
[23]Fan, A. H., Liao, L. M. and Peyrière, J.. Generic points in systems of specification and Banach valued Birkhoff ergodic average. Discrete Contin. Dyn. Syst. 21(4) (2008), 11031128.CrossRefGoogle Scholar
[24]Fan, A. H. and Shieh, N. R.. Multifractal spectra of certain random Gibbs measures. Statist. Probab. Lett. 47 (2000), 2531.CrossRefGoogle Scholar
[25]Feng, D. J.. Gibbs properties of self-conformal measures and the multifractal formalism. Ergod. Th. & Dynam. Sys. 27 (2007), 787812.CrossRefGoogle Scholar
[26]Feng, D. J., Lau, K. S. and Wu, J.. Ergodic limits on the conformal repeller. Adv. Math. 169 (2002), 5891.CrossRefGoogle Scholar
[27]Feng, D. J., Wen, Z. Y. and Wu, J.. Some dimensional results for homogeneous Moran sets. Sci. China Ser. A 40 (1997), 475482.CrossRefGoogle Scholar
[28]Falconer, K. J.. The multifractal spectrum of statistically self-similar measures. J. Theoret. Probab. 7 (1994), 681702.CrossRefGoogle Scholar
[29]Frisch, U. and Parisi, G.. Fully developed turbulence and intermittency. Turbulence and Predictability of Geophysical Flows and Climate Dynamics. North-Holland, Amsterdam, 1985, pp. 8488.Google Scholar
[30]Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I. and Shraiman, B. I.. Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33(3) (1986), 11411151.CrossRefGoogle ScholarPubMed
[31]Hentschel, H. and Procaccia, I.. The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8 (1983), 435444.CrossRefGoogle Scholar
[32]Hiriart-Urruty, J. and Lemaréchal, C.. Fundamentals of Convex Analysis. Springer, Berlin, 2001.CrossRefGoogle Scholar
[33]Hutchinson, J. E.. Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), 713747.CrossRefGoogle Scholar
[34]Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
[35]Khanin, K. and Kifer, Y.. Thermodynamic formalism for random transformations and statistical mechanics. Sinaĭ’s Moscow Seminar on Dynamical Systems (American Mathematical Society Translations, Series 2, 171). American Mathematical Society, Providence, RI, 1996, pp. 107140.Google Scholar
[36]Kesseböhmer, M.. Large deviation for weak Gibbs measures and multifractal spectra. Nonlinearity 14 (2001), 395409.CrossRefGoogle Scholar
[37]Kesseböhmer, M. and Stratmann, B. O.. A multifractal formalism for growth rates and applications to geometrically finite Kleinian groups. Ergod. Th. & Dynam. Syst. 24 (2004), 141170.CrossRefGoogle Scholar
[38]Kifer, Y.. Ergodic Theory of Random Transformations. Birkhäuser Boston, Inc., Boston, 1986.CrossRefGoogle Scholar
[39]Kifer, Y.. Fractals via random iterated function systems and random geometric constructions. Fractal Geometry and Stochastics (Finsterbergen, 1994) (Progress in Probability, 37). Birkhäuser, Basel, 1995, pp. 145164.CrossRefGoogle Scholar
[40]Kifer, Y.. On the topological pressure for random bundle transformations. Amer. Math. Soc. Transl. 202 (2001), 197214.Google Scholar
[41]Lalley, S. and Gatzouras, D.. Hausdorff and box dimensions of certain self-affine fractals. Indiana Univ. Math. J. 41 (1992), 533568.CrossRefGoogle Scholar
[42]Ledrappier, F. and Walters, P.. A relativised variational principle for continuous transformations. J. London Math. Soc. 16 (1977), 568576.CrossRefGoogle Scholar
[43]Liu, P. D. and Zhao, Y.. Large deviations in random perturbations of Axiom A basic sets. J. London Math. Soc. 68(2) (2003), 148164.CrossRefGoogle Scholar
[44]Mattila, P.. Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
[45]Olivier, E.. Multifractal analysis in symbolic dynamics and distribution of pointwise dimension for g-measures. Nonlinearity 12 (1999), 15711585.CrossRefGoogle Scholar
[46]Olsen, L.. Random Geometrically Graph Directed Self-similar Multifractals (Pitman Research Notes in Mathematics Series, 307). Longman Scientific & Technical, Harlow; Wiley, New York, 1994.Google Scholar
[47]Olsen, L.. A multifractal formalism. Adv. Math. 116 (1995), 82196.CrossRefGoogle Scholar
[48]Olsen, L.. Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. J. Math. Pures Appl. 82 (2003), 15911649.CrossRefGoogle Scholar
[49]Parry, W.. Entropy and Generators in Ergodic Theory. W. A. Benjamin, New York, 1969.Google Scholar
[50]Pesin, Ya.. Dimension theory in dynamical systems. Contemporary Views and Applications. University of Chicago Press, Chicago, IL, 1997.Google Scholar
[51]Pesin, Ya. and Weiss, H.. The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples. Chaos 7 (1997), 89106.CrossRefGoogle ScholarPubMed
[52]Peyrière, J.. A vectorial multifractal formalism. Fractal Geometry and Applications: A Jubilee of Benot Mandelbrot, Part 2 (Proceedings of the Symposia in Pure Mathematics, 72, Part 2). American Mathematical Society, Providence, RI, 2004, pp. 217230.CrossRefGoogle Scholar
[53]Phelps, R. R.. Lectures on Choquet’s Theorem (Lecture Notes in Mathematics, 1757). 2nd edn. Springer, Berlin, 2001.CrossRefGoogle Scholar
[54]Rohlin, V. A.. On the fundamental ideas of measure theory. Mat. Sb. N.S. 25(67) (1949), 107150; see also Amer. Math. Soc. Transl. 1(71) (1952).Google Scholar
[55]Takens, F. and Verbitskiy, E.. On the variational principle for the topological entropy of certain non-compact sets. Ergod. Th. & Dynam. Sys. 23 (2003), 317348.CrossRefGoogle Scholar
[56]Walters, P.. An Introduction to Ergodic Theory. Springer, New York, 1982.CrossRefGoogle Scholar
[57]Yosida, K.. Functional Analysis. Springer, New York, 1965.Google Scholar
[58]Zălinescu, C.. Convex Analysis in General Vector Spaces. World Scientific, River Edge, NJ, 2002.CrossRefGoogle Scholar