Hostname: page-component-f554764f5-fnl2l Total loading time: 0 Render date: 2025-04-11T23:35:40.298Z Has data issue: false hasContentIssue false

Modulus of continuity of invariant densities and entropies for piecewise expanding maps

Published online by Cambridge University Press:  07 April 2025

JOSÉ F. ALVES*
Affiliation:
Centro de Matemática da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal (e-mail: [email protected])
ODAUDU ETUBI
Affiliation:
Centro de Matemática da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal (e-mail: [email protected])

Abstract

Using a perturbation result established by Galatolo and Lucena [Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenz-like maps. Discrete Contin. Dyn. Syst. 40(3) (2020), 1309–1360], we obtain quantitative estimates on the continuity of the invariant densities and entropies of the physical measures for some families of piecewise expanding maps. We apply these results to a family of two-dimensional tent maps.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alves, J. F.. SRB measures for non-hyperbolic systems with multidimensional expansion. Ann. Sci. Éc. Norm. Supér. (4) 33 (2000), 132.CrossRefGoogle Scholar
Alves, J. F., Bonatti, C. and Viana, M.. SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140(2) (2000), 351398.CrossRefGoogle Scholar
Alves, J. F., Carvalho, M. and Freitas, J. M.. Statistical stability and continuity of SRB entropy for systems with Gibbs–Markov structures. Comm. Math. Phys. 296 (2010), 739767.CrossRefGoogle Scholar
Alves, J. F., Carvalho, M. and Freitas, J. M.. Statistical stability for Hénon maps of the Benedicks–Carleson type. Ann. Inst. H. Poincaré C Anal. Non Linéaire 27(2) (2010), 595637.CrossRefGoogle Scholar
Alves, J. F., Dias, C., Luzzatto, S. and Pinheiro, V.. SRB measures for partially hyperbolic systems whose central direction is weakly expanding. J. Eur. Math. Soc. (JEMS) 19(10) (2017), 29112946.CrossRefGoogle Scholar
Alves, J. F. and Mesquita, D.. Entropy formula for systems with inducing schemes. Trans. Amer. Math. Soc. 376(02) (2023), 12631298.Google Scholar
Alves, J. F., Oliveira, K. and Tahzibi, A.. On the continuity of the SRB entropy for endomorphisms. J. Stat. Phys. 123(4) (2006), 763785.CrossRefGoogle Scholar
Alves, J. F., Pumariño, A. and Vigil, E.. Statistical stability for multidimensional piecewise expanding maps. Proc. Amer. Math. Soc. 145(7) (2017), 30573068.CrossRefGoogle Scholar
Alves, J. F. and Pumariño, A.. Entropy formula and continuity of entropy for piecewise expanding maps. Ann. Inst. H. Poincaré C Anal. Non Linéaire 38(1) (2021), 91108.CrossRefGoogle Scholar
Alves, J. F. and Soufi, M.. Statistical stability of geometric Lorenz attractors. Fund. Math. 3(224) (2014), 219231.CrossRefGoogle Scholar
Alves, J. F. and Viana, M.. Statistical stability for robust classes of maps with non-uniform expansion. Ergod. Th. & Dynam. Sys. 22(1) (2002), 132.CrossRefGoogle Scholar
Araujo, V., Pacifico, M., Pujals, E. and Viana, M.. Singular-hyperbolic attractors are chaotic. Trans. Amer. Math. Soc. 361(5) (2009), 24312485.CrossRefGoogle Scholar
Bahsoun, W. and Galatolo, S.. Linear response due to singularities. Nonlinearity 37(7) (2024), 075010.CrossRefGoogle Scholar
Bahsoun, W. and Ruziboev, M.. On the statistical stability of Lorenz attractors with a ${C}^{1+\alpha }$ stable foliation. Ergod. Th. & Dynam. Sys. 39(12) (2019), 31693184.CrossRefGoogle Scholar
Baladi, V.. On the susceptibility function of piecewise expanding interval maps. Comm. Math. Phys. 275(3) (2007), 839859.CrossRefGoogle Scholar
Baladi, V. and Smania, D.. Linear response formula for piecewise expanding unimodal maps. Nonlinearity 21(4) (2008), 677711.CrossRefGoogle Scholar
Benedicks, M. and Carleson, L.. On iterations of $1-a{x}^2$ on $\left(-1,1\right)$ . Ann. of Math. (2) 122(1) (1985), 125.CrossRefGoogle Scholar
Benedicks, M. and Carleson, L.. The dynamics of the Hénon map. Ann. of Math. (2) 133(1) (1991), 73169.CrossRefGoogle Scholar
Benedicks, M. and Young, L.-S.. Absolutely continuous invariant measures and random perturbations for certain one-dimensional maps. Ergod. Th. & Dynam. Sys. 12(1) (1992), 1337.CrossRefGoogle Scholar
Benedicks, M. and Young, L.-S.. Sinai–Bowen–Ruelle measures for certain Hénon maps. Invent. Math. 112(3) (1993), 541576.CrossRefGoogle Scholar
Bowen, R.. Equilibrium States and Ergodic Theory of Anosov Diffeomorphisms (Lectures Notes in Mathematics, 470). Springer-Verlag, Berlin, 1975.CrossRefGoogle Scholar
Bowen, R. and Ruelle, D.. The ergodic theory of Axiom A flows. Invent. Math. 29 (1975), 181202.CrossRefGoogle Scholar
Freitas, J. M.. Continuity of SRB measure and entropy for Benedicks–Carleson quadratic maps. Nonlinearity 18(2) (2005), 831854.CrossRefGoogle Scholar
Galatolo, S. and Lucena, R.. Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenz-like maps. Discrete Contin. Dyn. Syst. 40(3) (2020), 13091360.CrossRefGoogle Scholar
Giusti, E.. Minimal Surfaces and Functions of Bounded Variation (Monographs in Mathematics, 80). Birkhäuser Verlag, Basel, 1984.CrossRefGoogle Scholar
Góra, P. and Boyarsky, A.. Absolutely continuous invariant measures for piecewise expanding ${\mathrm{C}}^2$ transformation in ${\mathrm{R}}^{\mathrm{N}}$ . Israel J. Math. 67(3) (1989), 272286.CrossRefGoogle Scholar
Ionescu Tulcea, C. T. and Marinescu, G. I.. Théorie ergodique pour des classes d’opérations non complètement continues. Ann. of Math. (2) 52 (1950), 140147.CrossRefGoogle Scholar
Jakobson, M. V.. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Comm. Math. Phys. 81(1) (1981), 3988.CrossRefGoogle Scholar
Keller, G.. Stochastic stability in some chaotic dynamical systems. Monatsh. Math. 94(4) (1982), 313333.CrossRefGoogle Scholar
Keller, G. and Liverani, C.. Stability of the spectrum for transfer operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 28(1) (1999), 141152.Google Scholar
Lasota, A. and Yorke, J. A.. On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973), 481488.CrossRefGoogle Scholar
Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula. Ann. of Math. (2) 122(3) (1985), 509539.CrossRefGoogle Scholar
Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension. Ann. of Math. (2) 122(3) (1985), 509539.CrossRefGoogle Scholar
Pesin, Y. B.. Characteristic Ljapunov exponents, and smooth ergodic theory. Uspekhi Mat. Nauk 32(4) (1977), 55112.Google Scholar
Pumariño, A., Rodríguez, J. Á., Tatjer, J. C. and Vigil, E.. Expanding Baker maps as models for the dynamics emerging from 3D-homoclinic bifurcations. Discrete Contin. Dyn. Syst. Ser. B 19(2) (2014), 523541.Google Scholar
Pumariño, A., Rodríguez, J. Á., Tatjer, J. C. and Vigil, E.. Chaotic dynamics for two-dimensional tent maps. Nonlinearity 28(2) (2015), 407434.CrossRefGoogle Scholar
Pumariño, A. and Tatjer, J. C.. Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms. Nonlinearity 19(12) (2006), 28332852.CrossRefGoogle Scholar
Ruelle, D.. A measure associated with Axiom A attractors. Amer. J. Math. 98 (1976), 619654.CrossRefGoogle Scholar
Rychlik, M.. Bounded variation and invariant measures. Studia Math. 76(1) (1983), 6980.CrossRefGoogle Scholar
Sinai, Ya. G.. Gibbs measure in ergodic theory. Russian Math. Surveys 27(2) (1972), 2169.CrossRefGoogle Scholar
Tatjer, J. C.. Three-dimensional dissipative diffeomorphisms with homoclinic tangencies. Ergod. Th. & Dynam. Sys. 21(1) (2001), 249302.CrossRefGoogle Scholar