Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T09:27:47.526Z Has data issue: false hasContentIssue false

The modified Lax and two-dimensional Toda lattice equations associated with simple Lie algebras

Published online by Cambridge University Press:  19 September 2008

George Wilson
Affiliation:
Mathematical Institute, 24–29 St Giles, Oxford OX1 3LB, England
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We associate to each complex simple Lie algebra g a hierarchy of evolution equations; in the simplest case g = sl(2) they are the modified KdV equations. These new equations are related to the two-dimensional Toda lattice equations associated with g in the same way that the modified KdV equations are related to the sinh-Gordon equation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

References

REFERENCES

[1]Ablowitz, M. J., Kaup, D. J., Newell, A. C. & Segur, H.. The inverse scattering transform: Fourier analysis for non-linear problems. Studies in Appl. Math. 53 (1974), 249315.CrossRefGoogle Scholar
[2]Adler, M.. On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de Vries equations. Inventiones Math. 50 (1979), 219248.CrossRefGoogle Scholar
[3]Bogoyavlensky, O. I.. On perturbations of the periodic Toda lattice. Commun. Math. Phys. 51 (1976), 201209.CrossRefGoogle Scholar
[4]Bourbaki, N.. Groupes et algèbres de Lie, ch. 4, 5, 6. Hermann: Paris, 1968.Google Scholar
[5]Bulgadaev, S. A.. Two dimensional integrable field theories connected with simple Lie algebras. Phys. Lett. 96B (1980), 151153.CrossRefGoogle Scholar
[6]Fordy, A. P. & Gibbons, J.. Integrable non-linear Klein—Gordon equations and Toda lattices. Commun. Math. Phys. 77 (1980), 2130.CrossRefGoogle Scholar
[7]Kostant, B.. The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math. 131 (1959), 9731032.CrossRefGoogle Scholar
[8]Kostant, B.. The solution to a generalized Toda lattice and representation theory. Advances in Math. 34 (1979), 195338.CrossRefGoogle Scholar
[9]Kupershmidt, B. A. & Wilson, G.. Modifying Lax equations and the second Hamiltonian structure. Inventiones Math. 62 (1981), 403436.CrossRefGoogle Scholar
[10]Kupershmidt, B. A. & Wilson, G.. Conservation laws and symmetries of generalized sine-Gordon equations. Commun. Math. Phys. 81 (1981), 189202.CrossRefGoogle Scholar
[11]Leznov, A. N. & Saveliev, M. V.. Representation of zero curvature for the system of non-linear partial differential equations and its integrability. Letters in Math. Phys. 3 (1979), 498–494.CrossRefGoogle Scholar
[12]Manin, Yu. I.. Algebraic aspects of non-linear differential equations. Itogi Nauki i Tekhniki, ser. Sovremennye Problemy Matematiki 11 (1978), 5152;Google Scholar
J. Sov. Math. 11 (1979), 1122.CrossRefGoogle Scholar
[13]Mikhailov, A. V.. Integrability of a two-dimensional generalization of the Toda chain. Pis'ma Zh. Eksp. Teor. Fiz. 30 (1979), 443448;Google Scholar
JETP Letters 30 (1979), 414418.Google Scholar
[14]Mikhailov, A. V., Olshanetsky, M. A. & Perelomov, A. M.. Two-dimensional generalized Toda lattice. Commun. Math. Phys. 79 (1981), 473488.CrossRefGoogle Scholar
[15]Reiman, A. G. & Semenov-Tian-Shansky, M. A.. Current algebras and non-linear partial differential equations. Dokl. Akad. Nauk SSSR 251 (1980), 13101314;Google Scholar
Soviet Math. Doklady 21 (1980), 630634.Google Scholar
[16]Serre, J.-P.. Algèbres de Lie semi-simples complexes. Benjamin: New York, 1966.Google Scholar
[17]Wilson, G.. Commuting flows and conservation laws for Lax equations. Math. Proc. Camb. Phil. Soc. 86 (1979), 131143.CrossRefGoogle Scholar
[18]Wilson, G.. On two constructions of conservation laws for Lax equations. Quart. J. Math. Oxford (to appear).Google Scholar
[19]Zakharov, V. E. & Shabat, A. B.. A scheme for integrating the non-linear equations of mathematical physics by the inverse scattering method II. Fund. Anal. Appl. 13 (3) (1979), 1322 (Russian), 166–174 (English).CrossRefGoogle Scholar
[20]Date, E., Jimbo, M., Kashiwara, M. & Miwa, T.. RIMS preprints 356362. Kyoto University 1981.Google Scholar
[21]Drinfel'd, V. G. & Sokolov, V. V.. Equations of KdV type and simple Lie algebras. Dokl. Akad. Nauk SSSR 258 (1981), 1116.Google Scholar
[22]Helgason, S.. Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press: New York, 1978.Google Scholar
[23]Kac, V. G.. Infinite dimensional algebras, Dedekind's η-function and the very strange formula. Advances in Math. 30 (1978), 85136.CrossRefGoogle Scholar